

Status report of the CERN microwave axion experiment **M. Betz**, F. Caspers, M. Gasior

9th Patras Workshop on Axions, WIMPs and WISPs Mainz (Germany), 2013

Outline

- Short introduction: Principle of the experiment
- Making it happen
 - Microwave cavities
 - RF shielding
 - Narrowband signal detection
 - Finding a suitable magnet
- Latest ALPs results
- Outlook / Future plans

Principle

How it looks like in real life

Connected by optical fibres

The WISP conversion cavities

tuning screw position [mm] 20 50 Ω coaxial 15 cable 10 TM₀₁₀ TM_{110} TM_{011} coupling antenna 5 TE₁₁₇ TE₂₁₁ TE_{011} 0 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 tuning 1e9 Frequency [Hz] screw f_{res} [GHz] G ALPs¹ G HSP¹ Mode meas. Q contact spring 1.75 12 000 0.77 0.76 TM₀₁₀ TE₀₁₁ 2.96 23 000 0.52 0.09

¹ Result of numerical calculation, only the max value of |G(k'/k)| is shown. Cav. next to each other, 20 mm separation

Measured mode chart

Components of the receiving chain

Low noise frontend

Needs to function in the magnet at 3 Tesla! Many design iterations were necessary!

Custom downmixing chain

- 2 mixer stages
- Boundless recording time at 20 kHz BW
- Optimized for low noise and minimum frequency drift

Narrowband signal detection

- Calculate **power spectrum** by a Fast Fourier Transform (FFT)
- Spectral bins ≈ array of Bandpass filters
- longer time trace ≈ narrower filter ≈ lower noise floor
- We search for a **monochromatic** signal, it's power should always be concentrated within one bin

Linear increase of signal to noise ratio with measurement time

But:

Oscillators suffer from frequency drifts!

How to keep the \approx 1.7 GHz signal within the \approx 30 µHz "filter" bandwidth?

Effect of frequency lock

See also: F. Caspers, S. Federmann and D. Seebacher, Demonstration of 10⁻²² W Signal Detection Methods in the Microwave Range, Internal RF technical Note CERN-BE-Note-2009-026.

Effect of frequency lock

Next step: searching for a magnet

M1 magnet at CERN

Main user: CMS detector development

Photos by G. Prior http://indico.cern.ch/getFile.py/access?contribId=27&sessionId=3&resId=0&materialId=slides&confId=106198

MRI magnet at

University of Geneva, Brain & Behaviour Laboratory Made accessible for us on weekends many thanks to **S. Rieger & C. Burrage**

Next step: Measurement run(s)

The complete setup, ready for moving to Geneva

26.4.2013: Setup in the magnet

excellent infrastructure in the MRI lab

- Air **temperature** tightly **regulated** (20 °C)
- Natural **air flow** through the magnet
- Enough free space in nearby **equipment room**
- The walls having big **feed-through** ports

Besides searching for ALPs, we did some experimental verification of Murphys law

10.1.2013	Initial visit to 3 T magnet. Welding seams on Stainless steel shielding vessel turned out to be too magnetic, safety hazard, Redesign!			
23.3.2013	Test and characterization of RF frontend in the 3 T field →Permanent damage to the commercial optical transmitter , Redesign!			
26.4.2013	First measurement run over 16 h . →Windows crashed and discarded all data (harddisk was full)			
27.4.2013	Second measurement run over 14 h. Success!			
16.6.2013	Third measurement run over 24 h. Success!			

What can go wrong, will go wrong!

The result spectra from 27.4.2013

- Test tone signal is visible as narrow line
 → Receiving chain and frequency locking was operational
- No ALP candidate visible

detection threshold
-210 dBm = 10⁻²⁴ W
≈ 1 photon / s

Defining the detection threshold

Largest peak within frequency window of interest: -215 dBm

> Detection threshold: -210 dBm

→ No ALPs detected

With this threshold, probability of a false positive is around 1 %

Monitoring the cavities frequency drift

The ALP signal will only be visible if both cavities are tuned to f_{svs} +- 100 kHz

Detecting cavity

Thermal noise density is max. at the resonant frequency f_{res}

We checked f_{res} **before** and **after** the measurement run

Emitting cavity

We monitor the **operating temp**. and **reflected RF power**. Both parameters indicate continuously how well the cavity is tuned to f_{sys}

Spectrogram

For identifying unknown time dependent or spurious signals

Spectrogram

For identifying unknown time dependent or spurious signals

ALPs exclusion limit

Measurement run of 27.4.2013 in 3 T magnet

P _{em}	33.3	W	Power into emitting cavity
P _{det}	10 ⁻²⁴	W	Minimum detectable signal power
Q _{em}	8164		Loaded quality factor of emitting cavity
Q _{det}	9636		Loaded quality factor of detecting cavity
G	0.22 0.94		Geometry factor
ω	1.74	GHz	RF signal frequency
В	3.0	Т	Magnetic field strength

$$g = \sqrt[4]{\frac{P_{\text{det}}}{P_{\text{em}}Q_{\text{det}}Q_{\text{em}} \left|G\right|^2}} \cdot \frac{\omega_0}{B}$$

Exclusion limit over wide m_a range: $g \le 1.1 \cdot 10^{-7} \text{ GeV}^{-1}$ for: $1 \cdot 10^{-15} \text{ eV} \le m_a \le 7.2 \cdot 10^{-6} \text{ eV}$

F. Hoogeveen, "Terrestrial axion production and detection using RF cavities", Physics B288 1992 (195–200) J. Jaeckel, A. Ringwald, "A Cavity Experiment to Search for Hidden Sector Photons", Physics B659 2008 (509-514)

ALPs exclusion limit

Measurement run of 27.4.2013 in 3 T magnet

The old HSP exclusion limits

From a 12 h run in March 2012

 \rightarrow still significant potential for improvement with minimum effort

[1] M. Betz, F. Caspers, "A microwave paraphoton and axion detection experiment with 300 dB electromagnetic shielding at 3 GHz", proc. of IPAC 2012

Outlook: short term

- Another weekend run (already done at 16.6.13)
 What we managed to improve
 - Longer measurement run (24 h instead of 14 h)
 - Larger recording BW
 - higher Q
 - more RF power
 - We placed Cr_2O_3 crystals in the cavities

"One may speculate whether an axion detector made of Cr_2O_3 crystals could enhance the probability of finding axions." [1]

- Data evaluation:
- Publication of results:
- PhD thesis:

[1] F. Hehl et al., "Relativistic nature of a magneto-electric modulus of Cr2O3 crystals: A four-dimensional pseudoscalar and its measurement", PHYSICAL REVIEW A 77, 022106 2008

We could reach g = 8 · 10⁻⁸ GeV⁻¹ Over a wide mass range

CR₂O₃ crystal on mounting screw, ready to be placed inside cavity

pending ... pending ... pending ... ©

(20 kHz instead of 2 kHz)

(12200 instead of 8100)

(45 W instead of 33 W)

Outlook: long term

Nothing is decided yet, just some ideas

- "Low frequency" LSW at 200 MHz (m_a ≤ 8·10⁻⁷ eV) Available ingredients at CERN:
 - CMS M1 magnet, 3 Tesla, 1400 mm bore diameter
 - SPS standing wave cavities, 200 MHz
 - Matching tetrode tube amplifier, 50 kW

The catch: Will not be able to probe unexplored ALP regions

- Dark matter Haloscope with a long thin cavity [1]
 - HERA dipole magnet, readily available in a test stand at DESY
 - 5 Tesla, cold bore at 5 K

The catch: Tuning is difficult, only sensitive to a very narrow ALPs mass range O(MHz)

[1] O. K. Baker et al., Prospects for searching axion like particle dark matter with dipole, toroidal, and wiggler magnets, PHYSICAL REVIEW D 85, 035018 (2012)

<u>Acknowledgements</u>

- Thanks to S. Rieger and the Brain & Behaviour Laboratory at the University of Geneva for making the ALPs measurement in the MRI magnet possible
- Thanks to C. Burrage for getting us connected
- Many thanks for a large number of hints and inspiring discussions to K. Baker, A. Malagon, K. Zioutas, J. Troschka, A. Collar, P. Blanc and J. Jaeckel
- We are grateful for support from R. Jones, E. Jensen and the BE department management at CERN

Thank you!

Outlook: SPS cavity in CMS-M1 magnet

Fig. 1: Cross-section of the SPS tunnel with a new acceleration module

The new RF system for lepton acceleration in the CERN SPS P.E. Faugeras et al., PAC 1987

Green = diameter of the M1 magnet bore

Cavity length = 0.7 m

Magnet length (2 T limit) = 2 m

Cavity itself would just fit inside the bore

Magnet bore accessible from top and bottom →RF power cables

Outlook: SPS cavity in CMS-M1 magnet Estimated sensitivity for a LSW setup

Hidden photons

Axion like particles

