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Outline

Short introduction: Principle of the experiment
Making it happen

— Microwave cavities

— RF shielding

— Narrowband signal detection
— Finding a suitable magnet

Latest ALPs results
Outlook / Future plans
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How it looks like in real life
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The WISP conversion cavities

Measured mode chart
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Components of the receiving chain
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Low noise frontend
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Needs to function in the magnet at 3 Tesla! Many design iterations were necessary!



Custom downmixing chain

Custom downmixing chain
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Narrowband signal detection

10—22

Calculate power spectrum by a
Fast Fourier Transform (FFT)
Spectral bins = array of 107
Bandpass filters

Signal becomes visible

10

longer time trace = narrower
filter = lower noise floor
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We search for a monochromatic ;=
|=10h, BW,_ = 0.042 mHz

signal, it’s power should always

iy . . -4 -3 -2 -1 0 1 2 3 4
be concentrated within one bin Frequency offset [Hz]
Linear increase of signal to noise But:
. . . i i |
ratio with measurement time Oscillators suffer from frequency drifts!

How to keep the = 1.7 GHz signal within the
= 30 uHz ,filter” bandwidth?



Effect of frequency lock

Rng 20 dBm RMS:5
-92
dBm : .
Purple: no frequency lock ﬂosu‘lla.tors nged tq be !ocked.
e Emitting cavity drive signal
e Several local oscillators in the
Blue: frequency locked with receiver
 ADCsampling clock
LogMag 10 MHz reference pling
freq. drift << BW,,
6
dB
/div

-152
dBm

Center 1.7001 GHz Span 30 Hz
Res BW 10 mHz TimelLen 150 Sec

See also: F. Caspers, S. Federmann and D. Seebacher, Demonstration of 10?2 W Signal Detection Methods in the Microwave Range,
Internal RF technical Note CERN-BE-Note-2009-026.



Effect of frequency lock




Next step:
searching for a magnet



M1 magnet at CERN

Main user: CMS detector development

Photos by G. Prior http://indico.cern.ch/getFile.py/access?contribld=27&sessionld=3&resld=0&materialld=slides&confld=106198



http://indico.cern.ch/getFile.py/access?contribId=27&sessionId=3&resId=0&materialId=slides&confId=106198
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University of Geneva, Brain & Behaviour Laboratory many thanks to
Made accessible for us on weekends S. Rieger & C. Burrage



Next step:
Measurement run(s)

The complete setup,
ready for moving to Geneva




26.4.2013: Setup in the magnet

o Receiver and .
1 im.power amp.
51 | béhind this.wall

N
< \ gy
. . - L [’
.

View from front ; View from back g

excellent infrastructure in the MRI lab

e Air temperature tightly regulated (20 °C) ¢ Enough free space in nearby equipment room
e Natural air flow through the magnet e The walls having big feed-through ports



Besides searching for ALPs, we did some
experimental verification of Murphys law

Initial visit to 3 T magnet. Welding seams on Stainless steel shielding
10.1.2013 . .
vessel turned out to be too magnetic, safety hazard, Redesign!
Test and characterization of RF frontend in the 3 T field
23.3.2013 : . . .
—>Permanent damage to the commercial optical transmitter, Redesign!

First measurement run over 16 h.

RS —2>Windows crashed and discarded all data (harddisk was full)

Second measurement run over 14 h.

27.4.2013
Success!

Third measurement run over 24 h.

16.6.2013 |
Success!

What can go wrong,
will go wrong!




180 Overview Zoom on test tone signal Zoom on WISP signal
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Defining the detection threshold

Largest peak
within frequency
window of
interest:

-215 dBm
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threshold:
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Noise power density [dBm/Hz]
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Monitoring the cavities frequency drift

The ALP signal will only be visible if both cavities are tuned to f; +- 100 kHz

Detecting cavity

Tune of det. cav., f,,, = 1.740030 GHz, BW,,, = 1000 Hz

— Before meas. run
— After meas. run
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Temperature log. Start of recording: Sat Apr 27 17:38:57 2013
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We monitor the operating temp. and
reflected RF power. Both parameters

indicate continuously how well the cavity

is tuned to fg



Spectrogram

For identifying unknown time dependent or spurious signals

Spectrogram of test tone [dBm]
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The test tone is visible as narrow Frequency resolution = 1.5 mHz,
line at the expected frequency. frest Time resolution = 100 s



Spectrogram

For identifying unknown time dependent or spurious signals
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ALPs exclusion limit

Measurement run of 27.4.2013 in 3 T magnet

Pem 333 W Power into emitting cavity 1.4E-07 linear x & y scale !
] Minimum detectable signal
24
Pget 10 W - 1.2€-07
Qe 3164 Loa.ded quality factor of emitting 10807
cavity 2
O
Loaded quality factor of = 8.0E-08
Qaer 9636 detecting cavity *
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Exclusion limit over wide m, range:

Pdet wo
g — 4 . < . . _7 -1
Pedeethm |G|2 B g - 1 1 10 Gev
for: 110 eV<m, <7.2:10%eV

F. Hoogeveen, “Terrestrial axion production and detection using RF cavities”, Physics B288 1992 (195-200)
J. Jaeckel, A. Ringwald, “A Cavity Experiment to Search for Hidden Sector Photons”, Physics B659 2008 (509-514)



ALPs exclusion limit

Measurement run of 27.4.2013 in 3 T magnet

CAST
and SUMICO
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Plot from J. Jaeckel and A. Ringwald, Ann. Rev.
of Nuc. and Particle Sci., 60, 405, 2010.



The old HSP exclusion limits

Froma 12 h run in March 2012

iOptical LSW
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—> still significant potential for improvement with minimum effort

[1] M. Betz, F. Caspers, “A microwave paraphoton and axion detection experiment with
300 dB electromagnetic shielding at 3 GHz”, proc. of IPAC 2012



Outlook: short term

e Another weekend run (already done at 16.6.13)
What we managed to improve

™) We could reach
— Longer measurement run (24 h instead of 14 h) g=8- 10 GeV-
— Larger recording BW (20 kHz instead of 2 kHz) Over a wide
— higher Q (12200 instead of 8100) mass range
— more RF power (45 W instead of 33 W) y

— We placed Cr,0O; crystals in the cavities

“One may speculate whether an axion detector made of
Cr,0O; crystals could enhance the probability of finding axions.” [1]

e Data evaluation: pending ... T
e Publication of results: pending ... (. ==
* PhD thesis: pending ... © CR,0; crystalon
mounting screw, ready
[1] F. Hehl et al., “Relativistic nature of a magneto-electric modulus of Cr203 crystals: A four-dimensional o be plaEcige

pseudoscalar and its measurement”, PHYSICAL REVIEW A 77, 022106 2008 AL




Outlook: long term

Nothing is decided yet, just some ideas

* “Low frequency” LSW at 200 MHz (m_<8-107 eV)
Available ingredients at CERN:
— CMS - M1 magnet, 3 Tesla, 1400 mm bore diameter
— SPS standing wave cavities, 200 MHz
— Matching tetrode tube amplifier, 50 kW
The catch: Will not be able to probe unexplored ALP regions

e Dark matter Haloscope with a long thin
cavity [1]
e HERA dipole magnet, readily available in a
test stand at DESY
e 5 Tesla, cold bore at 5 K

The catch: Tuning is difficult, only sensitive to a very
narrow ALPs mass range O(MHz)

[1] O. K. Baker et al., Prospects for searching axion like particle dark matter
with dipole, toroidal, and wiggler magnets, PHYSICAL REVIEW D 85, 035018 (2012)
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Outlook: SPS cavity in CMS-M1 magnet
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Fig. 1: Cross-section of the SPS tunnel with
a new acceleration module

The new RF system for lepton acceleration in the CERN SPS
PE. Faugeras et al., PAC 1987

Green = diameter of the
M1 magnet bore

Cavity length =0.7 m

Magnet length (2T
limit) =2 m

Cavity itself would just
fit inside the bore

Magnet bore accessible
from top and bottom
—RF power cables
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Outlook: SPS cavity in CMS-M1 magnet

Estimated sensitivity for a LSW setup
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