Direct dark matter search with XENON

Teresa Marrodán Undagoitia On Behalf of the XENON100 Collaboration

Patras workshop on Axions, WIMPs and WISPs, Mainz, June 2013

Direct dark matter detection

Detection via elastic scattering off nuclei \rightarrow nuclear recoils electrons \rightarrow electronic recoils Liquid xenon as detection medium

- High stopping power
 → good self-shielding
- Scintillation at 178 nm
 → no wavelength shifter
 required
- Sensitivity to spin-independent and spin-dependent interactions (¹²⁹Xe and ¹³¹Xe)

Two phase xenon TPC

- Scintillation signal (S1)
- Proportional signal (S2)

- → Electronic/nuclear recoil discrimination
 - Energy scales for NR and ER to-date based on S1!
 - Quenching processes are different for NR and ER

The XENON program

- XENON10: 15 kg active mass
- XENON100: 62 kg active mass
 - Currently running
- XENON1T: \sim 2.2 T active mass
 - construction just started!

Laboratori Nazionali del Gran Sasso (Italy) \sim 3 650 m.w.e. shielding

XENON100 TPC

- 30 cm length and 30 cm \varnothing
- 161 kg LXe (30 50 kg FV)
- Selected low radioactivity materials

XENON100, Astropart. Phys. 35 (2012) 573

The XENON Collaboration

Rice

Columbia

UCLA

Zürich

Coimbra LNGS

Münster

Weizmann

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Bern

Heidelberg Nikhef

Results from 225 live days data (2012)

Science data

Spatial distribution of events

- No significant signal over expected background
- Exclusion limit derived using profile likelihood method Electronic and nuclear recoil backgrounds considered Recent publication of the neutron background estimation, XENON100 (2013) arXiv:1306.2303
 - BG expectation in the benchmark region: (1.0 ± 0.2) events

Results from XENON100

- Spin-independent best sensitivity: $\sigma = 2 \times 10^{-45} \text{ cm}^2$ at 55 GeV/*c*² WIMP mass
- Results in tension with signal indications at low WIMP masses
 XENON100, Phys. Rev. Lett. 109 (2012) 181301

Spin-dependent results

- Spin-dependent best sensitivity for neutron coupling: 3.5×10^{-40} cm² at 45 GeV/c² WIMP mass
- Isotopes with a non zero nuclear spin (¹²⁹Xe & ¹³¹Xe)
- Nuclear physics new calculations from Menendez *et al.* used XENON100, arXiv:1301.6620 (2013) accepted at PRL

Verification of nuclear recoil energy scale

→ XENON100 NR energy scale includes all measurements of direct neutron scattering experiments

Monte Carlo simulation of neutron source

XENON100, arXiv:1304.1427

- Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum
- Source strength measurement (PTB): (160 ± 4) n/s
- Complete Monte Carlo description of the detector including detector shield (water, lead, polyethylen and copper)
- *E*_{dep} is converted to S1 and S2 including thresholds, resolutions and acceptances from data

MC simulation of neutron source

- Step 1: Using L_{eff} from direct measurements, reproduce S2 spectrum \rightarrow obtain optimum Q_{y}
- Step 2: Using the obtained Q_y , reproduce S1 spectrum \rightarrow obtain a new L_{eff}

Best fit of source strength: 159 n/s

MC simulation of neutron source

- Poor agreement below 2 PE due to unknown efficiencies below threshold
- Good overall agreement. Best fit L_{eff} matches previous measurements
- \rightarrow Results of XENON100 remain unchanged using this L_{eff}

Recent CDMS signal indication and XENON100

Likelihood analysis: 0.19% probability that the known-background-only hypothesis

- Best fit at 1.9×10^{-41} cm² at 8.6 GeV/ c^2 WIMP mass

CDMS, arXiv: 1304.4279

Event distribution that XENON100 would observe for the best fit point of CDMS

(Note that the number of events below threshold are acceptance corrected)

XENON1T

Dark matter particles producing electronic recoils

Knowledge on the ER energy scale and detector threshold required:

 ^{83m}Kr provides monoenergetic lines at 9.4 keV and 32.1 keV

Manalaysay et al, Rev. Sci. Inst. 81, 073303 (2010)

 \rightarrow 9.4 keV is still a high energy

DAMA oscillation signal is in the (2-5) keV energy region

Compton measurement to determine LXe light yield down to $\sim 2 \,\text{keV}$

Setup at the University of Zurich

Similar setup at Columbia University: uses Ge as coincidence detector instead of Nal

Results of the Compton experiments

- Light yield decreases at 0-field below 50 keV
- Field quenching \sim 75% at low energies
- o Derived XENON100 energy threshold: 2.3 keV
 → sensitive to DAMA signal! Results coming soon

Columbia results: Aprile *et al.*, Phys. Rev. D 86, 112004 (2012) Zurich results including field quenching: Baudis *et al.*, Phys. Rev. D 87, 115015 (2013)

XENON1T

1 ton fiducial mass (total >3 ton)
1 m drift length
100x less background than in XENON100
Shielding: water-Cherenkov muon veto
Low radioactive PMTs with <QE>=37%

Construction started in June 2013! Commissioning by end 2014

XENON1T sensitivity goal

- Sensitivity goal: $\sigma = 2 \times 10^{-47} \text{ cm}^2$ for 50 GeV WIMP mass (calculated for 1.1 ton FV)
- Hopefully a WIMP detection!

XENON1T background and suppression

Muon veto design

 Background rejection power:
 > 99.5% neutrons with a μ tagged in the veto

- Requirement: < 1 event in the full exposure
 - External γ's: suppression via self-shielding (ρ_{LXe} ~ 3 g/cm³)
 + material screening and selection
 - Internal BGs (Rn and ⁸⁵Kr): removal using an adsorption tower (Rn) + a cryogenic distillation column (Kr)
 - < 1 ppt nat. Kr in Xe achieved in XENON100!
 - Neutrons: muon veto + material selection
 Low U and Th contaminations
 → low α and (α,n) production

Example: Development of a low radioactive PMT with Hamamatsu: < 1 mBq/PMT in U and Th!

XENON1T status

- Construction started in HallB at LNGS
 - Currently support building
 - Next construction of the water tank
- Detector design
 - Teflon UV reflector + high transparent meshes
 - Cooling using pulse tube refrigerators
 - Purification rate $\sim 100 \text{ s.l.p.m.}$
 - 1 m e⁻-drift and 100 kV HV demonstrated

XENON1T current TPC design

Summary

- Scattering of WIMPs off nuclei
 - XENON100 excludes the current indications of DM
 - Energy threshold (*L_{eff}*) verified with MC/data comparison of an AmBe neutron source
- Scattering of light dark matter particles off electrons
 - XENON100 threshold is at \sim 2.3 keV
 - XENON100 analysis of time variations of the background rate ongoing
- XENON1T constructions starts this year
 - Aimed sensitivity of $2\times 10^{-47}\,\text{cm}^2$ for 50 GeV WIMP mass
 - Construction ongoing + optimisation of TPC design
 - Planned start of science run: early 2015

L_{eff} direct measurements

Nuclear recoil energy (E_{nr}) :

 $E_{nr} = rac{S1}{L_y L_{eff}} imes rac{S_e}{S_r}$

S1: measured signal in p.e.

 L_y : LY for 122 keV γ in PE/keV

 S_e/S_r : quenching for 122 keV γ /NR due to drift field

 $L_{\textit{eff}} = q_{\textit{nucl}} imes q_{\textit{el}} imes q_{\textit{esc}}$

Dataset: 225 live days

→ More than one year continuous operation, detector stable during the whole run

- Lower S1 threshold at 3 PE $\sim 6.6 \, \text{keV}_{nr}$
- S2 trigger efficiency improved

at 100% above 150 PE

Electronic recoil spectrum

- ⁸⁵Kr concentration reduced: dedicated LXE distillation column
- RGMS measurements \rightarrow (19 ± 4) ppt
- Radon contamination: delayed coincidence and α-tagging
- Radioactivity of materials is a dominant contribution

ightarrow Background level: $(5.3\pm0.6)\cdot10^{-3}$ events/(keV kg day) in 34 kg

Data analysis

- Blind analysis:
- $\rightarrow\,$ data selection based on calibration/non-blinded science data
 - Data stability:
 - → Selection of periods with stable HV, low radon level, stable thermodynamics of the detector (P, T, ...)
 - Selection of physical interactions:
 - → Noise cuts, stability of PMTs, width of S2 pulses, S2 pulse above threshold and S1 pulse seen by at least 2 PMTs
 - Selection of single scatters:
 - → Single S1 and single S2, S1 PMT pattern, cut on position reconstruction, veto cut
 - Fiducial volume and WIMP search region:
 - $\rightarrow~$ 34 kg elliptic volume, (3 < S1 < 30) PE and S2/S1 > 3 σ contour of the NR distribution

Analysis paper: XENON100 (2012), arXiv:1207.3458

Calibration data

- Main analysis based on a profile likelihood method
 XENON100, Phys. Rev. D 84, 052003 (2011)
- Benchmark WIMP region

- Electronic recoil band: defined with ⁶⁰Co and ²³²Th sources
- Nuclear recoil band: defined with AmBe neutron source
- \rightarrow ER lines during n-calibration:

Background prediction in the benchmark region

- Electronic recoil background
 - · Gaussian and anomalous leakage
 - $\rightarrow\,$ determined using non-blinded background data and MC and data from $^{60}\text{Co}/^{232}\text{Th}$ calibration sources
 - (0.79±0.16) events
- Neutron background prediction
 - Muon-induced fast neutrons (70% of the total)
 - *α n* reactions and spontaneous fission
 - $(0.17^{+0.12}_{-0.07})$ events
- Total BG: (1.0 ± 0.2) events in 225 d