Search for dark sector at BABAR

Wolfgang Gradl
on behalf of the BABAR collaboration

Institut für Kernphysik

9th Patras workshop 25 June 2013

Dark sector

Models with new 'dark' force mediated by gauge boson with GeV mass: proposed to explain observations of PAMELA, FERMI, AMS, DAMA/LIBRA, ...

e.g. Arkani-Hamed et al., Phys. Rev. D 79, 015014 (2009)

■ Possibility of hidden MeV/GeV-scale sector is poorly constrained ⇒ worth exploring

AMS, Phys. Rev. Lett. 110, 141102 (2013)

PLANCK galactic haze, arXiv:1208.5483

Dark sector and dark forces

- New dark sector with a $U(1)_D$ gauge group (or something more complicated)
- New gauge boson(s): dark photon A' which could have $\mathcal{O}(\text{GeV})$ mass
- lacksquare Interaction with SM via kinetic mixing with mixing strength $oldsymbol{arepsilon}$

$$\Delta \mathcal{L}_{\mathsf{mix}} = \varepsilon \mathsf{F}^{\mu \nu} \mathsf{B}_{\mu \nu}$$

- Kinetic mixing generates non-zero coupling of SM fermions to A'; $\alpha' = \alpha \varepsilon$
- In these models, TeV-scale dark matter particles χ can annihilate into pair of A' which then decay into SM fermions

Low-energy high-luminosity e⁺e⁻ colliders offer low-background environment to search for MeV/GeV-scale hidden sector

The BABAR experiment at PEP-II (SLAC)

 $\sigma(p_{\tau})/p_{\tau} = 0.13\% p_{\tau} \oplus 0.45\%$

BABAR data set

PEP-II: asymmetric e^+e^- collider, running mostly on $\Upsilon(4S)$

BABAR recorded luminosity

Data taking finished April 2008

5

Dark matter searches at BABAR

BABAR has searched for a light, (CP-odd) Higgs ${\it A}^0$ (foreseen in several extensions of the SM, e.g. NMSSM)

- Based on $\Upsilon(2,3S)$ data sets
- Different final states ($\mu^+\mu^-$, $\tau^+\tau^-$, hadrons, invisible), pattern of decay depends on A^0 mass
- Obtained limits on A^0 mass $e^+e^- \to \gamma A^0$, $A^0 \to \ell^+\ell^-$, $q\overline{q}$, invisible

Dark matter searches at BABAR

BABAR has searched for a light, (CP-odd) Higgs A^0 (foreseen in several extensions of the SM, e.g. NMSSM)

- Based on Y(2,3S) data sets
- Different final states ($\mu^+\mu^-$, $\tau^+\tau^-$, hadrons, invisible), pattern of decay depends on A^0 mass
- Obtained limits on A^0 mass $e^+e^- \to \gamma A^0$, $A^0 \to \ell^+\ell^-$, $q\overline{q}$, invisible
- Reinterpreting this as $e^+e^- \rightarrow \gamma A', A' \rightarrow \ell^+\ell^-, q\overline{q}$, invisible variation in efficiency (A' is vector, A^0 is scalar) to be taken into account

$$lacksquare$$
 Already re-interpreted: $\Upsilon(3S)$, $\Upsilon(2S) o \gamma A^0$, $A^0 o \mu^+ \mu^-$

- Events with a single energetic photon ($E_{\gamma}^* \geq 200 \mathrm{MeV}$) and exactly 2 oppositely-charged tracks
- \blacksquare At least one track identified as μ
- lacksquare Dimuon candidate and γ back-to-back in COM
- Background dominated by QED processes:
 - continuum $e^+e^- \rightarrow \gamma u^+u^-$
 - ► ISR production of ρ^0 , ϕ , I/ψ , ψ (2S), and Y(1S)
- Plot yield as function of reduced mass $m_R \equiv \sqrt{m_{\mu\mu}^2 4 m_\mu^2}$

- Signal yield as function of A^0 mass in $0.212 \le m(A^0) < 9.3$ GeV by unbinned ML fits
- Signal mass resolution 2 10 MeV
- Mass steps of 2-5 MeV, total of ≈ 1500 independent measurements
- **Exclude regions near** I/ψ and $\psi(2S)$
- No significant excess of events above background in entire mass range
- Place 90% CL Bayesian UL on product

$$\mathcal{B}(\Upsilon(\textit{nS}) \to \gamma \textit{A}^{0}) \times \mathcal{B}(\textit{A}^{0} \to \mu^{+}\mu^{-})$$

■ Combined UL on the product of effective coupling and branching fraction, $f_V^2 \mathcal{B}_{uu}$

Search for dark photon

Limit obtained by re-interpreting $\Upsilon(2S,3S) o \gamma A^0$, $A^0 o \mu^+ \mu^-$

J. Jaros

Search for dark photon

Limit obtained by re-interpreting $\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$ In progress: extend analysis to full BABAR dataset

I. laros

Higgsstrahlung

Minimal gauge group: abelian
 U(I) broken by Higgs' h'
 Batell et al., Phys. Rev. D 79, I15008 (2009)

- Look for 'Higgsstrahlung' process $e^+e^- \rightarrow A'h'(\rightarrow A'A')$
- Accessible final states depend on mass of A'
- Suppressed only by ε^2
- Search for $A' \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-$ combinations

Search strategy: inclusive and exclusive searches, using full BABAR dataset

■ Reconstruct A' \rightarrow e⁺e⁻, μ ⁺ μ ⁻, π ⁺ π ⁻

Exclusive final states:

- Search for 6 tracks with at least one pair of oppositely charged leptons
- ▶ 3A' candidate events must contain $\geq 95\%$ of CM energy
- ► A' masses must be within 10 140 MeV of each other
- A' vertices point back to IP
- Inclusive $e^+e^- \rightarrow 4\ell X (X \neq \pi^+\pi^-)$
 - ► Search for $4\mu + X$ or $2\mu 2e + X$ final states with mass above 1.2 GeV
 - Di-lepton pairs must point to IP
 - Recoil mass of the system X similar to dilepton A' candidates

$e^+e^- o A'h'(o A'A')$

Apply vetos to remove ϕ and ω from search Final event sample contains these signal candidates:

$$1 \times 4\mu 2\pi$$
, $2 \times 2\mu 4\pi$, $2 \times 2e4\pi$, $1 \times 4\mu X$

Three combinations per event

Dark photon width is proportional to $\alpha' \varepsilon^2$; place limits on this combination of coupling and mixing

Limits on α'/α

Solid : $\alpha' = 1/137$

 $\mathsf{Dashed}: \alpha' = \mathsf{I}$

If dark sector gauge group non-abelian: additional gauge bosons W'

Essig et al., Phys. Rev. D 80, 015003 (2009)

- Signature: $e^+e^- \rightarrow W'W' \rightarrow (\ell^+\ell^-)(\ell'^+\ell'^-)$
- Depending on scenario and coupling to standard model, cross section could be $\mathcal{O}(\mathsf{fb})$
 - → hundreds of events?

- Search for events with two lepton pairs of ≈ equal mass
- Using 536 fb⁻¹ of BABAR data
- Mass range $0.24 \, \text{GeV} < m(W') < \sqrt{s}/2$
- Cross section limit $\sigma(\mathrm{e^+e^-} \to \mathrm{W'W'} \to 4\ell) < (25-60)$ ab at 90% C.L.
- $\epsilon^2 \alpha' < 2 \times 10^{-10}$ in most of the mass range

Summary

- Low-energy e⁺e⁻ colliders provide clean environment to explore MeV/GeV-scale dark matter and dark sector.
- So far, no evidence seen of A^0 , A', h', W' ...
- lacktriangle Several results from Y decays have already set stringent limits on models of generic dark matter or BSM physics
- Many searches currently being performed at BABAR on full data set; expect results soon

Dark photon searches at BABAR

Aim to really have updates by the Summer conferences 2013

Extra Material

$$\Upsilon(\text{IS})
ightarrow \gamma extsf{A}^{ extsf{0}}$$
 , $extsf{A}^{ extsf{0}}
ightarrow \mu^{+} \mu^{-}$

- Clean sample from $Y(2,3S) \rightarrow \pi^+\pi^-Y(1S)$ transitions 100M Y(2S) and 120M Y(3S) decays
- Tag Y(IS) production by reconstructing mass recoiling against di-pion system
- Select events with 2 muons and a photon with $E_{\gamma} > 200 \, \text{MeV}$
- Improve energy resolution by beam energy constraint
- Look for peaks in reduced mass spectrum

 $\Upsilon(\mathsf{IS}) o \gamma \mathsf{A^0}$, $\mathsf{A^0} o \mu^+ \mu^-$: results babar, Phys. Rev. D 87, 031102(R) (2013)

- 4885 ML fits in steps of A⁰ mass
- All observed deviations consistent with background fluctuations
- largest fluctuation: local significance \sim 3.6 σ probability \sim 18% when including 'look-elsewhere effect'

 $\Upsilon(\mathsf{IS}) o \gamma \mathsf{A^0}$, $\mathsf{A^0} o \mu^+ \mu^-$: results babar, Phys. Rev. D 87, 031102(R) (2013)

- 4885 ML fits in steps of A⁰ mass
- All observed deviations consistent with background fluctuations
- largest fluctuation: local significance \sim 3.6 σ probability \sim 18% when including 'look-elsewhere effect'

Combined with measurements on $\Upsilon(2,3S)$:

$$f_Y^2 imes {\cal B}({\sf A}^0 o \mu^+ \mu^-) < (0.29 - 40) imes {\sf I}\,{\sf 0}^{-6}$$
 at 90% C.L. for ${\it m}({\sf A}^0) < 9.2\,{\sf GeV}$

Dark sector searches at BABAR

■ Light Higgs searches

in $\Upsilon(2,3S)$ radiative decays

$$A^0 \to \mu^+ \mu^-$$
 PRL 103, 081803 (2009)

$$A^0 \to \tau^+ \tau^-$$
 PRL 103, 181801 (2009)

$$A^0 \rightarrow \text{hadrons} \quad \text{PRL 107, 221803 (2011)}$$

in
$$\Upsilon(\mathsf{IS})$$
 radiative decays

•
$$A_{a}^{0} \rightarrow \mu^{+}\mu^{-}$$
 PRD 87, 031102 (2013)

$$A^0 \rightarrow \tau^+ \tau^-$$
 arXiv:1210.5669

■ Search for dark photon

- $e^+e^- \rightarrow \gamma A'(\rightarrow e^+e^-, \mu^+\mu^-)$ in progress
- $e^+e^- o \gamma A'(o 3h)$

in progress

Search for invisible dark photon

•
$$e^+e^- \rightarrow \gamma A'$$
, $A' \rightarrow invisible$
in progress

Search for dark boson(s)

$$e^+e^- \rightarrow A'^* \rightarrow W'W'$$
 arXiv:0908.2821

$$ho$$
 $e^+e^- o \gamma A'^* o W'W''$

