Techniques for the stabilization of the ALPS-II optical cavities

Robin Bähre for the ALPS collaboration

9th PATRAS workshop for Axions, WIMPs and WISPs Schloss Waldthausen, Mainz 2013 Jun 26th

M~A~X-P~L~A~N~C~K-G~E~S~E~L~L~S~C~H~A~F~T

- How LSW experiments can be improved by resonant optical techniques?
- Why are there challenging requirements on the optical design in ALPS-II?
- How we can meet these requirements?
- What has been achieved so far on behalf of the optical design of ALPS-II?

Light-Shining-Through-a-Wall (LSW)

- • exploit coupling to EM fields for production and (indirect) detection of ALPs
- straight-forward approach, model independent
- ALP production in the lab is much weaker than from astronomical sources
- but: coherent light source offers many advantages

ALPS-II

Projected improvements in ALPS-II

Parameter	Scaling	ALPS-I	ALPS-IIc	Improvement
wavelength	$g \sim 1 / \lambda^{1/4}$	λ = 532 nm	λ = 1064 nm	1.2
production power	g ~ 1 / P ^{1/4}	P = 1 kW	P = 150 kW	3.5
regen. signal gain	g ~ 1 / PB ^{1/4}	PB _r = 1	PB _r = 40000	14
detector dark noise	$g \sim 1 / n_d^{1/8}$	n _d = 2 mHz	n _d = 1 μHz	2.6
detector efficiency	$g \sim 1 / \epsilon^{1/4}$	ε = 0.9	ε = 0.75	0.96
measurement time	g ~ 1 / t ^{1/8}	t = 10 h	t > 10 h	1
magnetic field	g ~ 1 / (B L)	BL = 22 Tm	BL = 468 Tm	21
total for ALPs				> 3000
total for HPs				~ 150

Projected improvements in ALPS-II

Parameter	Scaling	ALPS-I	ALPS-IIC	Improvement
wavelength	g ~ 1 / $\lambda^{1/4}$	λ = 532 nm	λ = 1064 nm	1.2
production power	g ~ 1 / P ^{1/4}	P = 1 kW	P = 150 kW	3.5
regen. signal gain	g ~ 1 / PB ^{1/4}	PB _r = 1	PB _r = 40000	14
detector dark noise	$g \sim 1 / n_d^{1/8}$	n _d = 2 mHz	$n_d = 1 \ \mu Hz$	2.6
detector efficiency	g ~ 1 / $\epsilon^{1/4}$	ε = 0.9	ε = 0.75	0.96
measurement time	g ~ 1 / t ^{1/8}	t = 10 h	t > 10 h	1
magnetic field	g ~ 1 / (B L)	BL = 22 Tm	BL = 468 Tm	21
total for ALPs				> 3000
total for HPs				~ 150

The ALPS project stages

Improvements on the production side

Laser light source

- 35 W @ 1064 nm laser power
- single mode
- single frequency
- high intrinsic frequency stability
- frequency modulation with PZT
- enhanced

Frede et al., Optics Express, Vol. 15, Issue 2, pp. 459-465 (2007)

Circulating field in production cavity

- High intensities on the mirrors can
 - destroy the dielectric coatings
 - alter or distort Gaussian beam properties
- ~500 kW/cm² have been operated safely in Gravitational Wave Detection for years
- green light rather than infrared known to cause problems
- change from green to infrared
- limit PB_{PC} to 5000 \rightarrow 580 kW/cm² (ALPS-IIa) \rightarrow 300 kW/cm² (ALPS-IIb/c)

Aperture and optimum mode diameter

ALPS-IIc: Superconducting dipoles introduce aperture with diameter 2r = 40 mm for the cavity modes

$$\frac{\Delta P}{P} = -e^{-2r^2/w^2}$$

optimum curvature radius L = $z_r \ll w_0^2 = L^* \lambda / \pi$

Aperture and optimum mode diameter

ALPS-IIc: Superconducting dipoles introduce aperture with diameter 2r = 40 mm for the cavity modes

$$\frac{\Delta P}{P} = -e^{-2r^2/w^2}$$

assuming 8 ppm additional losses / mirror

optimum curvature radius L = $z_r \ll w_0^2 = L^* \lambda / \pi$

Improvements on the regeneration side

LSW with resonantly enhanced regeneration

- cavities on production & regeneration side improve signal
- signal enhancement ~ power build-up (PB) of both cavities

LSW with resonantly enhanced regeneration

LSW with resonantly enhanced regeneration

Optical layout

Length control

- in order to achieve 95% of the resonance PB, mistuning has to be <1/10 of the linewidth (FWHM)
- cavity length change per FWHM
 - $\Delta L_{\rm FWHM} = \frac{\lambda}{2 \cdot F}$
- PC (ALPS-IIb/c):
 - $\Delta L_{\text{FWHM, PC}} = 11 \text{ pm}$ $\Delta L_{.95, PC} < 1.1 \text{ pm}$
- RC (ALPS-IIb/c): $\Delta L_{FWHM, RC} = 1.5 \text{ pm}$ $\Delta L_{.95, RC} < 0.15 \text{ pm}$ PATRAS Mainz 2013

Pound-Drever-Hall

1.0

 Pound-Drever-Hall technique allows to sense small frequency offsets between the cavity resonance and the injected light

useful sensor for cavity locking

E. Black, An introduction to Pound–Drever–Hall laser frequency stabilization

0.8 ntensity 0.6 0.4 0.2 0.8 1 1.2 1.4 0.6 180 120 60 Phase 0.6 0.8 1.2 1 1.4 -60 -120 -180 frequency (free spectral ranges) $\frac{1}{2}\sqrt{P_cP_s}$ 0.95 1.05 1.1 -0. -1.0

frequency (free spectral ranges)

Length control - PC

Length control - RC

Alignment control

• displacement

- tilt
 Δθ
- ALPS-IIc requirement: $\Delta \theta_{.95} < 10$ microrad

large beam diameter make cavity modes more susceptible to tilt

Differential Wavefront Sensing

- Auto-alignment technique for optical modecleaners
- DWS uses sideband modulation
- differential phase is detected at independent Guoy positions along the reflected beam
- Piezo-electric mirrors can correct for misalignments

First Sensor QPD

Auto-alignment - PC

Auto-alignment - RC

Central Board

axions don't refract

CMM measurement of ALPLAN surface

PATRAS Mainz 2013

for substrates on optical axis:

- ultra-low wedge
- tilt compensation

for central board:

- high surface planarity
- low thermal effects on planarity

Table-top experiment and results

- demonstrate stabilization techniques
- table-top setup at AEI Hannover
- central breadboard and two 1m-cavities with PB 100

- dichroic stabilization of RC was achieved
- locked for >10 min, small dichroic phase diff.

Dichroic Phase Shift

- different penetration depth for IR and green mode
- measure and correct with frequency-shifting AOM

- the improved optical design of ALPS-II will enhance the sensitivity in ALPs and HP searches
- the ALPS cavities have to be controlled with respect to frequency and spatial alignment
- a table-top experiment is performed, which has already partly demonstrated the cavity stabilization concept to work

