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Why BSM?
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CKM

• SM has been so successful.
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Almost p
erfe

ctly
 matc

h to
 SM

EWPT

For subatomic world

[LEPEWWG, Mar 2012] [Unitary Triangle fit]
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It lo
oks l
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the S
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and Nothing E
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!

• The last SM chapter also looks correct.

13년 6월 27일 목요일



5

• Dark & visible matter and dark energy

Jan Oort (1932), Fritz Zwicky (1933) Strong gravitational lensing in Abell 1689Bullet cluster

v � r�1/2

observation

expectation

(Planck+WP+highL+BAO)

⌦b ' 0.048

⌦DM ' 0.259

⌦⇤ ' 0.691

Heights of peaks 
⇒ Ωb, ΩDM 
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Inflation models in light of Planck2013 data

V / �4

[Planck2013 results]
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- Density perturbations
- Baryon number asymmetry
- Dark matter
- Dark energy
- Neutrino masses and mixing

No explanations to most of 
astrophysical and cosmological 

observations.

Shortcomings of SM
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Contents

• Hidden Sector DM

• Higgs Portal 

• Local vs. Global Dark Symmetry 

• Models 

• Implications for Higgs phenomenology

(see also talk by O. Lebedev)
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Based on the works 
(with S.Baek, Suyong Choi, T. Hur, D.W.Jung, Sunghoon Jung, 

J.Y.Lee, W.I.Park, E.Senaha in various combinations)

• Strongly interacting hidden sector (0709.1218 PLB,1103.2571 
PRL)

• Singlet fermion dark matter (1112.1847 JHEP)

• Higgs portal vector dark matter (1212.2131 JHEP)

• Vacuum structure and stability issues (1209.4163 JHEP)

• Singlet portal extensions of the standard seesaw 
models with unbroken dark symmetry (1303.4280 JHEP)

(Some works in preparation)
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Hidden Sector
• Any NP @ TeV scale is strongly constrained by EWPT 

and CKMology

• Hidden sector made of SM singlets, and less 
constrained, and could make CDM

• Hidden gauge sym can stabilize CDM

• Generic in many BSM’s including SUSY models

• Can address “QM generation of all the mass scales 
from strong dynamics in the hidden 
sector”  (alternative to the Coleman-Weinberg) : Hur 
and Ko, PRL (2011) and earlier paper and proceedings

Talk @ 2th PATRAS, Mykonos
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How to specify hidden sector ?

• Gauge group (Gh) : Abelian or Nonabelian

• Strength of gauge coupling : strong or weak

• Matter contents :  singlet, fundamental or higher 
dim representations of Gh

• All of these can be freely chosen at the 
moment : Any predictions possible ?

• But there are some generic testable features in 
Higgs phenomenology
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Singlet Portal

• If there is a hidden sector, then we need a 
portal to it in order not to overclose the 
universe

• There are only three unique gauge singlets 
in the SM + RH neutrinos

H†H, Bµ⌫ , NRSM Sector Hidden Sector

NR $ eHlL
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 General Comments

• Many studies on DM physics using EFT

• However we don’t know the mass scales of 
DM and the force mediator

• Sometimes one can get misleading results

• Better to work in a minimal renormalizable 
and anomaly-free models 

• Explicit examples : singlet fermion Higgs 
portal DM, vector DM, Z2 scalar CDM   
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Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 

A. Djouadi, et.al. 2011 

Higgs portal DM as examples
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS � 1

2
m2

SS
2 � �HS

2
H†HS2 � �S

4
S4 (1.1)

Lfermion =  [i� · @ �m ] � �H 
⇤

H†H   (1.2)

Lvector = �1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

All invariant 
under ad hoc 
Z2 symmetry
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m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

Higgs portal DM as examples

• Scalar CDM : looks OK, renorm. .. BUT .....

• Fermion CDM : nonrenormalizable

• Vector CDM : looks OK, but it has a number of 
problems (in fact, it is not renormalizable)

All invariant 
under ad hoc 
Z2 symmetry
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Usual story within EFT

• Strong bounds from direct detection exp’s put 
stringent bounds on the Higgs coupling to the 
dark matters

• So, the invisible Higgs decay is suppressed

• There is only one SM Higgs boson with the 
signal strengths equal to ONE if the invisible 
Higgs decay is ignored

• All these conclusions are not reproduced in 
the full theories (renormalizable) however
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The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,

Lhidden = LS + L� � �S⇥⇥, (1)

with

LS =
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4,

L� = ⇥(i/⇤ �m�0)⇥ (2)

Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (3)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (4)

In general the Higgs potential develops nontrivial vacuum expectation values
(vev)

⇤H⌅ = 1⇧
2

�
0
vH

⇥
, ⇤S⌅ = vS. (5)

1

ΨSM H S

mixing

invisible
decay

Production and decay rates are suppressed relative to SM.

17

 This simple model has not been studied properly !!

Singlet fermion CDM
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• Mixing and Eigenstates of Higgs-like bosons

Ratiocination

at vacuum

Mixing of Higgs and singlet
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• Signal strength (reduction factor)

0< α < π/2 ⇒ r₁(r₂) < 1
Invisible decay mode is not necessary! 

19

Ratiocination

If r_i > 1 for any single channel, 
this model will be excluded !!
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Constraints
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EW precision observables

20

α=π/9, π/4
m_h(ref)=120 GeV
115< m_h < 750 GeV 
30.< m₁ < 150 GeV
150< m₂< 750 GeV

Same for T and U

2 Dark matter to nucleon cross section

In the model we are considering,

⌅p ⌅ 1

⇤
m2

pf
2
p (14)

⇧ 1

⇤
m2

p

⇤
0.164

mp

v
⇥ sin� cos�

�
1

m2
1

� 1

m2
2

⇥⌅2
(15)

⇧ 5⇥ 10�9pb

�
⇥ sin� cos�

0.1

⇥2 �143GeV

m1

⇥4 �
1� m2

1

m2
2

⇥2

(16)

⌅p ⌅
1

⇤
m2

pf
2
p ⇧ 1

⇤
m2

p

⇤
0.164

mp

v
⇥ sin� cos�

�
1

m2
1

� 1

m2
2

⇥⌅2
(17)

3 Electroweak precision observables

STU-parameters [1]

�emS = 4s2W c2W

⇤
�ZZ(M2

Z)� �ZZ(0)

M2
Z

⌅
(18)

�emT =
�WW (0)

M2
W

� �ZZ(0)

M2
Z

(19)

�emU = 4s2W

⇤
�WW (M2

W )� �WW (0)

M2
W

⌅
(20)

VWX-parameters

�emV = �⇥
ZZ(M

2
Z)�

�S

4s2W c2W
(21)

�emW = �⇥
WW (M2

W )� �U

4s2W
(22)

In case of a singlet mixed with Higgs,

�emS = cos2 � �emS(m1) + sin2 � �emS(m2) (23)

4 Dark matter relic density

⇥CDM ⇤ 0.11

�
10�36cm2

⌃⌅v⌥fz

⇥
(24)

3

Peskin & Takeuchi, Phys.Rev.Lett.65,964(1990)

U=0
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• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints
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The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,

Lhidden = LS + L� � �S⇥⇥, (2)

with

LS =
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4,

L� = ⇥(i/⇤ �m�0)⇥ (3)

Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (4)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (5)
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• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints
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1

destructive!
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• We don’t use the effective lagrangian approach 
(nonrenormalizable interactions), since we don’t 
know the mass scale related with the CDM

- Only one Higgs boson (alpha = 0) 

- We cannot see the cancellation between two Higgs scalars in 
the direct detection cross section, if we used the above 
effective lagrangian

- The upper bound on DD cross section gives less stringent 
bound on the possible invisible Higgs decay
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• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints
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• Signal strength (r_2 vs r_1)
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Discovery possibility
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●: Ω(o),σ_p(x) 
●: Ω(o),σ_p(o)

: L= 5 fb⁻¹ for 3σ Sig.
: L=10 fb⁻¹ for 3σ Sig.
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• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints

23

Brief Article

The Author

November 8, 2011

Field contents
⇥ , ⇥̄ (1)

The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,

Lhidden = LS + L� � �S⇥⇥, (2)

with

LS =
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4,

L� = ⇥(i/⇤ �m�0)⇥ (3)

Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (4)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (5)
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SS
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SS � µ�

S

3
S3 � �S

4
S4
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Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (4)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
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• Signal strength (r_2 vs r_1)
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Discovery possibility

⦁: Ω(x),σ_p(x)
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Signal Strengths µ ≡
σ · Br

σ
SM

· Br
SM

ATLAS CMS
Decay Mode (MH = 125.5 GeV) (MH = 125.7 GeV)

H → bb −0.4± 1.0 1.15± 0.62
H → ττ 0.8± 0.7 1.10± 0.41
H → γγ 1.6± 0.3 0.77± 0.27

H → WW ∗ 1.0± 0.3 0.68± 0.20
H → ZZ ∗ 1.5± 0.4 0.92± 0.28
Combined 1.30± 0.20 0.80± 0.14

〈µ〉 = 0.96± 0.12

Higgs Physics A. Pich – LHCP 2013 9

Updates@LHCP

Getting smaller
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Vacuum Stability Improved
by the singlet scalar S

why do we live on the ragged edge of doom?

36

• if you believe in supersymmetry, then this is just a coincidence

• but dismissing striking features of the data as coincidence has 
historically not been a winning strategy...

A. Strumia, Moriond EW 2013

Joseph Lykken                                                                                                                            LHCP 2013, Barcelona, May 18, 2013
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Figure 13. RG-running of couplings as a function of renormalization scale for m1 =

125GeV, m2 = 500GeV and α = 0.1, but λHS = 0, i.e, mixing but no-loop correction.

Red/blue/green/dashed-blue line corresponds to λH/λHS/λ/λS .
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Figure 14. The mass bound of SM-like Higgs (m1) as a function of energy scale for

(α,λHS) = (0, 0.2)(left),(0.1, 0)(right) with λS = 0.1 and λ = 0.4. The red/blue line

corresponds to triviality/vacuum-stability bound in SM(dashed) and our model(solid). The

dashed black line corresponds to m1 = 125GeV.

5.4 Brief Summary

In brief summary, the numerical analysis shows that the vacuum stability of Higgs
potential and perturbativity of couplings constrains new dimensionless couplings of

– 29 –

Baek, Ko, Park, Senaha (2012)
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Similar for Higgs portal Vector DM

• Although this model looks renormalizable, it is 
not really renormalizable, since there is no agency 
for vector boson mass generation

• Need to a new Higgs that gives mass to VDM

• A complete model should be something like this:

3.6 Comparison with the e↵ective lagrangian approach

In this subsection, we would like to compare our model with the so-called Higgs

portal fermion dark matter model [22], where the singlet scalar S is presumed to be

integrated out, resulting in the following model lagrangian:

Le↵ =  

✓
m0 +

H†H

⇤

◆
 . (3.13)

Within this model, there is only one Higgs boson and its coupling to the DM is

strongly constrained by the direct detection experiments. This result is very di↵er-

ent from our analysis [2], where there is a generic cancellation between H1 and H2

contributions in the direct detection rates. In fact, �SI depends also on (sin↵ cos↵)2,

and it becomes zero when we ignore the mixing between the SM Higgs boson and the

singlet scalar S (see Eq. (3.16) of Ref. [2]). This result can never be obtained in the

approach based on the above e↵ective lagrangian (3.13). In our case the correlation

between Hi� � and the direct detection cross section is not that strong compared

with the results in Ref. [22]. It is important to consider the renormalizable models

in order to discuss phenomenology related with the singlet fermion dark matter and

Higgs bosons.

The same arguments also applies to the Higgs portal vector DM models, which

is assumed to be described by the following lagrangian:

L = �m2
V VµV

µ � �V H

4
H†HVµV

µ � �V
4
(VµV

µ)2 . (3.14)

Although this lagrangian looks power-counting renormalizable, it is not really renor-

malizable. This is well known from the old intermediate vector boson theory for

weak gauge boson W±. In order to give a mass to a spin-1 gauge boson, we need

some symmetry breaking agency. Assuming a new complex scalar �X breaks the

gauge symmetry spontanesouly, one ends up with a new scalar boson from �X which

would mix with the SM Higgs boson by Higgs portal. Therefore there will be two

Higgs-like scalar boson in the end, and phenomenology in the scalar sector should

be similar to that of the model described here and in Ref. [2]. We leave the detailed

discussions of this issue for the future publication [21].

4 Vacuum structure

Because of the presence of the singlet scalar, the vacuum structure of this model is

not that trivial. Since the Higgs potential is the quartic function of the Higgs fields

(at the tree level), there could be another nondegererate local minimum in the singlet

Higgs direction unless some symmetry exists. If that is the case, our EW vacuum

may not be global and its stability is unclear. In addition to this, as we mentioned

in Introduction, the EW vacuum could be destabilized at a high energy scale by the

– 9 –
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• There appear a new singlet scalar h_X from phi_X , which 
mixes with the SM Higgs boson through Higgs portal

• The effects must be similar to the singlet scalar in the 
fermion CDM model

• Important to consider a minimal renormalizable model to 
discuss physics correctly

• Baek, Ko, Park and Senaha, arXiv:1212.2131 (JHEP)
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1 Introduction

In this paper, we revisit the Higgs-portal vector DM which is a U(1)X gauge boson including

the hidden sector scalar that would break U(1)X and give the mass to the vector DM Xµ.

2 Abelian Model

2.1 Abelian Model for vector dark matter

Let us consider a vector boson dark matter Xµ, which is assumed to be a gauge boson

associated with Abelian dark symmetry U(1)X . The simplest model will be without any

matter fields charged under U(1)X except for a complex scalar �X whose VEV will generate

the mass for Xµ:

LV DM = �1

4
Xµ⌫X

µ⌫ +Dµ�
†
XDµ�X � �X

4
(�†

X�X � v2X)2 + �XH�†
X�XH†H (2.1)

in addition to the usual SM lagrangian.

Assuming that the U(1)X -charged �X develops a nonzero VEV and thus breaks U(1)X
spontaneously,

h0|�X |0i = vX + hX(x),

– 1 –

amount, unlike the claim made in literatures [1] based on the effective Lagrangian (1.2).

The decoupling of the 2nd scalar boson occurs rather slowly, since the mass mixing between

the SM Higgs boson and the new singlet scalar is due to the dim-2 operator. Also the mixing

between two scalar bosons makes the signal strength of two physical Higgs-like bosons less

than one, and make it difficult to detect both of them at the LHC. Since there is now an

evidence for a new boson at 125 GeV at the LHC [6, 7], the 2nd scalar boson in the singlet

fermion DM model is very difficult to observe at the LHC because its signal strength is

less than 0.3 [3, 8]. Also an extra singlet scalar saves the vacuum instability for mH = 125

GeV [8–10]. The electroweak (EW) vacuum can be still stable upto Planck scale even for

mH = 125 GeV [8]. These phenomena would be very generic in general hidden sector DM

models [11]. In short, it is very important to consider a renormalizable model when one

considers the phenomenology of a singlet fermion CDM.

Now let us turn to the Higgs portal vector dark matter described by (1.3) [1]. This

model is very simple, compact and seemingly renormalizable since it has only dim-2 and

dim-4 operators. However, it is not really renormalizable and violates unitarity, just like the

intermediate vector boson model for massive weak gauge bosons before Higgs mechanism

was developed. The Higgs portal VDM model based on (1.3) is a sort of an effective

lagrangian which has to be UV completed. It lacks including the dark Higgs field, ϕ(x),

that would mix with the SM Higgs field, h(x). Therefore the model (1.3) does not capture

dark matter or Higgs boson phenomenology correctly. It is the purpose of this work to

propose a simple UV completion of the model (1.3), and deduce the correct phenomenology

of vector CDM and two Higgs-like scalar bosons. Qualitative aspects of our model are

similar to those presented in Ref.s [3, 8], although there are some quantitative differences

due to the vector nature of the CDM.

This work is organized as follows. In Sec. 2, we define the model by including the

hidden sector Higgs field that generates the vector dark matter mass by the usual Higgs

mechanism. Then we present dark matter and collider phenomenology in the following

section. The vacuum structure and the vacuum stability issues are discussed in Sec. 4, and

the results are summarized in Sec. 5.

2 Model

Let us consider a vector boson dark matter, Xµ, which is assumed to be a gauge boson

associated with Abelian dark gauge symmetry U(1)X . The simplest model will be without

any matter fields charged under U(1)X except for a complex scalar, Φ, whose VEV will

generate the mass for Xµ:

LV DM = −1

4
XµνX

µν + (DµΦ)
†(DµΦ)− λΦ

4

(
Φ†Φ− v2Φ

2

)2

−λHΦ

(
H†H − v2H

2

)(
Φ†Φ− v2Φ

2

)
, (2.1)

in addition to the SM lagrangian. The covariant derivative is defined as

DµΦ = (∂µ + igXQΦXµ)Φ,

– 2 –
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Figure 6. The scattered plot of σp as a function of MX . The big (small) points (do not) satisfy the
WMAP relic density constraint within 3 σ, while the red-(black-)colored points gives r1 > 0.7(r1 <
0.7). The grey region is excluded by the XENON100 experiment. The dashed line denotes the
sensitivity of the next XENON experiment, XENON1T.

Since there is additional direction of Φ, the Higgs potential can have minima other than

our EW vacuum. In the following, we investigate whether the EW vacuum is global or not.

We closely follow the analysis done in Ref. [8].

– 9 –

Allowed Region

Allowed Region

Figure 8. The vacuum stability and perturbativity constraints in the ↵-m2 plane. We take
m1 = 125 GeV, gX = 0.05, MX = m2/2 and v� = MX/(gXQ�).

where we have used Eq. (4.8) in the second line. Therefore, as long as Eqs. (4.1) and (4.2)

are satisfied, the EW vacuum is always the global minimum. Note that this is not the case

for the generic Higgs potential [11].

Although the EW vacuum is stable at the EW scale, its stability up to Planck scale

(MPl ' 1.22⇥1019 GeV) is nontrivial question since a renormalization group (RG) e↵ect of

the top quark can drive �H negative at certain high-energy scale, leading to an unbounded-

from-below Higgs potential or a minimum that may be deeper than the EW vacuum. We

will work out this question by solving RG equations with respect to the Higgs quartic

couplings and the U(1)X gauge coupling. The one-loop � functions of those couplings are

listed in Appendix A. In addition to the vacuum stability, we also take account of the

perturbativity of the couplings. To be specific, we impose �i(Q) < 4⇡ (i = H,H�,�) and

g2X(Q) < 4⇡ up to Q = MPl.

Fig. 8 shows the vacuum stability and the perturbativity constraints in the ↵-m2 plane.

We take m1 = 125 GeV, gX = 0.05, MX = m2/2 and v� = MX/(gXQ�). The vacuum

stability constraint is denoted by red line; i.e., the region above the red line is allowed

for ↵ > 0, and it is the other way around for ↵ < 0. The perturbativity requirement is

represented by blue line; i.e., the region below the blue line is allowed for ↵ > 0, and it is the

other way around for ↵ < 0. For ↵ < 0, the region above the dotted black line is excluded

by Eq. (4.1). Putting all together, for ↵ > 0 the region between the red and blue lines

is allowed while for ↵ < 0 the region between the dotted black and blue lines is allowed.

– 13 –

New scalar improves 
EW vacuum stability 
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Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 

A. Djouadi, et.al. 2011 

With renormalizable lagrangian, 
we get different results !
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Why Dark Symmetry ?

• Is DM absolutely stable or very long lived ?

• If DM is absolutely stable, one can assume it 
carries a new conserved dark charge, 
associated with unbroken dark gauge sym

• DM can be long lived (lower bound on DM 
lifetime is much weaker than that on proton 
lifetime)

Higgs is harmful to DM stability
13년 6월 27일 목요일



• Very popular alternative to SUSY LSP

• Simplest in terms of the # of new dof’s

• But, where does this Z2 symmetry come 
from ?

• Is it Global or Local ?

Z2 sym scalar DM

3

not consider dim-3 operators, XRH†H or XIH†H, as-
suming the global dark symmetry GX is broken only by

nonrenormalizable operators.
Then the lifetime of XR or XI decaying into a pair or

photons would be

�(XR(or XI) ! ��) ⇠ 1

4⇡

✓
e2

M
Pl

◆
2

m3

X ⇠ 10�38

✓
mX(GeV)

100

◆
3

GeV (3)

This decay rate should be smaller than 10�52GeV, which
is possible only if mX . O(10) keV. If these nonrenor-
malizable operators are induced at lower energy scale
⇤ < M

Pl

, then the DM mass should be lighter than the
above estimate, scaled by (⇤/M

Pl

)2/3. Axion or light di-
lation DM is a good example of this. If these operators
were allowed with O(M

Planck

), it would be disastrous for
dark matter physics.

The above argument also applies to global Z
2

symme-
try which is invoked very often to stabilize the scalar dark
matter S with the following renormalizable lagrangian :

L =
1

2
@µS@

µS � 1

2
m2

SS
2 � �S

4!
S4 � �SH

2
S2H†H.

The Planck scale suppressed dim-5 operators will make
the weak scale dark matter S decay very fast in this
model too. Namely global Z

2

discrete symmetry is not
strong enough to guarantee the stability or longevity of
the scalar dark matter. This is also true for the case of
fermion dark matter, as described in the following sec-
tion.

Local dark gauge symmetry

If dark symmetry U(1)X is unbroken, then the scalar
dark mater will be absolutely stable and there will be a
long range dark force between dark matters. The mass-
less dark photon can contribute to the extra dark radia-
tion at the level of ⇠ 0.06, making slight increase of the

SM prediction for�N
e↵

towards the WMAP9 data. This
issue has been addressed in detail in our recent paper [2],
and we don’t describe it here in any more detail.

If dark symmetry U(1)X is a local symmetry that is
broken spontaneously by h�Xi = v� 6= 0, then the e↵ect
would be similar to the global symmetry breaking with
suitable changes of couplings. The dim-5 operators which
were dangerous in case of global dark symmetry are now
replaced by dim-6 operators since the global dark sym-
metry is implemented to local dark symmetry :

L =
1

M2

Pl

�†
XXO(4)

SM

. (4)

After �X develops nonzero VEV, this operator predicts
that the CDM lifetime is long enough to be safe from
cosmological constraints: However there appears a dim-4
operator which is a disaster for the DM longevity:

L = �XH2�†
XXH†H +H.c. (5)

After the U(1)X and EWSB, this operator induces a
nonzero VEV for X as well as X ! hh so that X can no
longer be a good CDM candidate.

In order to forbid the above dangerous dim-4 operator,
one has to assign di↵erent U(1)X charges to X and �X :
QX(X) = 1, QX(�X) = 2, for example. Then the model
would possess discrete local Z

2

symmetry after U(1)X
breaking, and the lightest U(1)X -charged particle would
be absolutely stable due to the local Z

2

symmetry.

L = L
SM

� 1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
XDµ�X � �X

4

⇣
�†
X�X � v2�

⌘
2

+DµX
†DµX �m2

XX†X

� �X

4

�
X†X

�
2 �

�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X�XH†H � �XH

4
X†X�†

X�X (6)

Due to the µ term, the mass degeneracy between XR and
XI is lifted, and also there could be CP violation from
the µ phase. The model is not so simple compared with
the usual Z

2

scalar CDM model:

L =
1

2
@µS@

µS � 1

2
m2

SS
2 � �S

4!
S4 � �SH

2
S2H†H.

Dark matter phenomenology in the model (6) is very rich
and beyond the scope of this letter [1]. On the other
hand, Higgs phenomenology is very simple. There will be
two neutral Higgs-like scalar bosons, the signal strengths
of which are less than 1 independent of decay channels.
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Fate of CDM with Z2 sym

• Global Z2 cannot save DM from decay with 
long enough lifetime

Consider Z2 breaking operators such as

1

MPlanck
SOSM

The lifetime of the Z2 symmetric scalar CDM S is roughly given by

�(S) ⇠ mS

M2
Planck

⇠ (

mS

100GeV

)10

�37GeV

The lifetime is too short for 100 GeV DM

keeping dim-4 SM 
operators only

33
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Fate of CDM with Z2 sym

• Spontaneously broken local U(1)X can do the 
job to some extent, but there is still a problem

Let us assume a local U(1)X is spontaneously broken by h�Xi 6= 0 with

QX(�X) = QX(X) = 1

Then, there are two types of dangerous operators:

�†
XXH†H, and �†

XXO(dim�4)
SM

Problematic ! Perfectly fine !
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• These arguments will apply to all the CDM 
models based on ad hoc global Z2 
symmetry

• One way out is to implement Z2 symmetry 
as local U(1) symmetry (Work in progress 
with Seungwon Baek and Wan-Il Park@ 
KIAS)
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Scalar dark matter stabilized by local Z2 symmetry

and the INTEGRAL 511 keV � ray

P. Ko⇤ and Wan-Il Park†

School of Physics, KIAS, Seoul 130-722, Korea

(Dated: February 13, 2013)

We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of

scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the

U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-
ken by quantum gravity e↵ects which can be described
by MPlanck scale suppressed nonrenormalizable operators
such as

1

MPlanck

�
SFµ⌫F

µ⌫ , S(H†H)2, ..
�

(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge
which is spontaneously broken into local Z2 symmetry.
This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X
charges equal to 2 and 1, respectively, in the following
lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
XDµ�X � �X

4

⇣
�†
X�X � v2�

⌘2
+DµX

†DµX �m2
XX†X

� �X

4

�
X†X

�2 �
�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X�XH†H � �XH

4
X†X�†

X�X (2)

After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2 +H.c.) = 2(X2
R �X2

I )

which lifts the mass degeneracy between XR and XI .
The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ (XR@µXI �XI@µXR) + g2XXµX

µ(X2
R +X2

I ) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV
and the lifetime of the heavier state is ⇠ 1026�29 sec,
then

XR ! XI�
⇤
h followed by �⇤

h ! � ! e+e�

could generates the positrons which would be a source of
511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-
bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp
contrast with the case of global Z2. However the local
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Unbroken Local Dark Sym
• Dark charge is conserved if dark symmetry is 

unbroken (E. Noether’s theorem)

• In this case, the Higgs sector needs not be 
extended

• Higgs phenomenology should be the same as 
the SM sector in the minimal version (modulo 
invisible H decay)

• Still the model could be OK until Planck scale 
for 125 GeV Higgs, since there could be other 
scalar fields (scalar CDM, for example) 
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Unbroken Local Dark Sym

• Local dark symmetry can be either confining 
(like QCD) or not

• For confining dark symmetry, gauge fields will 
confine and there is no long range dark force, 
and DM will be composite baryons/mesons in 
the hidden sector

• Otherwise, there could be a long range dark 
force that is constrained by large/small 
structures, and contributes to dark radiation
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Spon. Broken local dark sym

• If dark sym is spont. broken, DM will decay in general, 
if there is no remaining (discrete) unbroken gauge 
symmetry

• There will be a singlet scalar after spontaneous 
breaking of dark gauge symmetry, which mixes with 
the SM Higgs boson

• There will be at least two neutral scalars (and no 
charged scalars) 

• Vacuum stability is improved by the new scalar

• Higgs Signal strengths universally reduced from “ONE” 

13년 6월 27일 목요일



New minimal SM?

39

[Davoudiasl, Kitano, Li and Murayama, PLB 609 (2005) 117]
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New minimal(?) SM (NMSM)
• Lagrangian

40

• Organizing principle

• DM stability

Dark matter

Inflation

assumed by ad hoc. Z2-parity

[Davoudiasl, Kitano, Li and Murayama, PLB 609 (2005) 117]

- minimal particle content
- the most general renormalizable Lagrangian

Reheating

Neutrino mass,
Leptogenesis

Cosmological constant

(where is this from?)

m ' 1.8⇥ 1013GeV

µ . 106GeV

 . 10�14
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• NMSM parameter space

41

⌦Sh
2 = 0.11, yt(mZ) = 1.0

!  = quartic coupling of Higgs, "  = quartic coupling of S (DM)
#  = mixed quartic coupling of Higgs and DM

~ LHC band

Inconsistent with LHC data!?
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Inflation models in light of Planck2013 data

V / �4

[Planck2013 results]

13년 6월 27일 목요일



43

• WIMP-nucleon scattering in New Minimal SM

Triviality

XENON100
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New Minimal SM

☞ Simple addition of unrelated things
    (cf. SM was guided by gauge principle)
☞ Z2 does not guarantee the stability of DM
☞ Inconsistent with present data

Any Alternatives ??
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Alternative(s) 
to NMSM

45

[from “Seungwon Baek, P.Ko and Wan-IlPark, 
arXiv: 1303.4280 (accepted for JHEP)”]
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Why is the DM stable?
• Stability is guaranteed by a symmetry.

• Weak scale DM requires a local symmetry.
46

Observation requires [M. Ackermann et al. (LAT Collaboration), PRD 86, 022002 (2012)]

• A global symmetry is broken by gravitational 
effects, allowing interactions like

e.g: Z2, R-parity, Topology

⌧DM & 1026�30sec )
⇢

m� . O(10)keV
m . O(1)GeV

�Lint =

(
� �

MP
Fµ⌫Fµ⌫ for boson

� 1
MP

¯ �µDµ`LiH
†

for fermion
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Discrete or continuous?

• Discrete symmetry

• Continuous symmetry

47

- The symmetry may be originated from a spontaneously broken
  continuous symmetry (e.g: local Z2-symmetry).

- It may be from a large gauge group in a UV theory 
  (e.g: SO(32) or E8xE8’ → SU(3)cxSU(2)LxU(1)YxGDS?).

- Dark matter should have nothing to do with the symmetry breaking. 

- It should be the lightest odd particle.

- Dark matter should be the lightest (dark) charged particle.
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Unbroken local U(1)X

• Massless dark photon

48

Contributes to the radiation energy in addition to the one from SM.

  ⇒ Fractional contribution of dark photon is still allowed. 

• DM self-interaction
It may solve some puzzles of the collisionless CDM.

- core/cusp problem: 
  simulated cusp of DM density profile contrary to the cored one found
  in the obvserved LSB galaxies and dSphs

Nobs

e↵

= 3.30± 0.27 at 68% (cf., NSM

e↵

= 3.04)

- “too big to fail” problem: 
  simulated high internal density concentration of the subhalos in the MW-sized
  halos contrary to the observed brightest MW satellites

[S.-H Oh et al., arXiv:1011.0899]

[M. Boylan-Kolchin et al., arXiv:1111.2048]
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SM-DM communication

• Gauge-singlets

• Kinetic mixing

49

There could be the kinetic mixing between U(1)X and U(1)Y of the SM.

may lead efficient annihilations

 ⇒ This opens a direct detection channel.

L � �1

2
sin ✏Xµ⌫B

µ⌫ qem = �qX
gX
e

cosW tan ✏

 ⇒ DM becomes mini-charged under the electromagnetic interaction.

Higgs portal Right-handed neutrino portal

Leptogenesis and asymmetric DM?
provides a direct detection channel Anything else?

does not allow renormalizable interactions for a gauge-charged DM

H†H, `iH
†, N
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A minimal(?) model

50

• The structure of the model 

Higgs

RHN

Portals

Visible

SU(3)⇥ SU(2)L ⇥ U(1)Y

Invisible

U(1)X

Kinetic mixing
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• Symmetry
SU(3)⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X

• Lagrangian

(SM is neutral under U(1)_X)

(qL, qX) : N = (1, 0),  = (1, 1), X = (0, 1)

51

[See also A. Falkowski, J. T. Ruderman & T. Volansky, JHEP1105.016]

L = LKinetic + LH�portal + LRHN�portal + LDS

LKinetic = i ̄�µDµ + |DµX|2 � 1

4
Xµ⌫X

µ⌫ � 1

2
sin ✏Xµ⌫B

µ⌫

�LH�portal =
1

2
�HX |X|2H†H

�LRHN�portal =
1

2
MiN̄C

RiNRi +
⇥
Y ij
⌫ N̄Ri`LjH

† + �iN̄Ri X
† +H.c.

⇤

�LDS = m  ̄ +m2
X |X|2 + 1

4
�X |X|4
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• Interaction vertices of dark particles (X, ψ)

X/ 

X⇤/ ̄

X⇤

 

�0/�/H
Annihilation 

or
scattering

Decay of NR and ψ or X

where LSM is the standard model Lagrangian and

Lkin�mix = �1

2
sin ✏X̂µ⌫B̂

µ⌫ (2.2)

LH�portal = �1

2
�HXX†XH†H (2.3)

LX = |DµX|2 � 1

4
X̂µ⌫X̂

µ⌫ � m2
XX†X � 1

4
�X
⇣
X†X

⌘2
(2.4)

L = i ̄�µ
⇣
@µ + igXX̂µ

⌘
 � m  ̄ (2.5)

�LRHN�portal =
1

2
MiNC

RiNRi +
h
Y ij
⌫ NRi`LjH

† + �iNRi X† + H.c.
i

(2.6)

gX , X̂µ and X̂µ⌫ are the gauge coupling, the gauge field and the field strength tensor of the dark U(1)X ,

respectively. B̂µ⌫ is the gauge field strength of the SM U(1)Y . We assume

m2
X > 0, �X > 0, �HX > 0, (2.7)

so that the local U(1)X remains unbroken and the scalar potential is bounded from below at tree level
4.

Either X or  is absolutely stable due to the unbroken U(1)X , and will be responsible for the

present relic density of nonbaryonic CDM. In our model, there is a massless dark photon which couples

to the SM U(1)Y gauge field by kinetic mixing. One can diagonalize the kinetic terms by taking a

linear transformation defined as [48]
 

B̂µ

X̂µ

!
=

 
1/ cos ✏ 0

� tan ✏ 1

! 
Bµ

Xµ

!
(2.8)

In this basis, SM U(1)Y charge is redefined as qY = q̂Y / cos ✏, and hidden photon does not couples SM

fields. However, dark sector fields now couples to SM photon and Z-boson. In the small mixing limit,

the couplings are approximated to

LDS�SM = gXqXt✏ ̄�
µ (cWAµ � sWZµ) + |[@µ � igXqXt✏ (cWAµ � sWZµ)] X|2 (2.9)

where t✏ = tan ✏, cW = cos ✓W and sW = sin ✓W with ✓W being the Weinberg angle. Hence, dark sector

fields charged under U(1)X can be regarded as mini-charged particles under electromagnetism after

the kinetic mixing term is removed by a field redefinition, Eq. (2.8).

Meanwhile, we can assign lepton number and U(1)X charge to RH neutrinos and dark fields as

shown in Table 1. Then, the global lepton number is explicitly broken by Majorana mass terms for the

field N  X

qL 1 1 0

qX 0 1 1

Table 1. Lepton number and U(1)X charge assignment

RH neutrinos. If Y⌫ and �i carry CP -violating phases, the decay of RH neutrinos can develop lepton

number asymmetry in both of visible and dark sectors. Since U(1)X is unbroken, the asymmetry in

the dark sector has a relation,

Y� + Y�X = 0 (2.10)

4Quantum corrections to the scalar potential will be discussed in Sec. 3.2.

– 4 –

where LSM is the standard model Lagrangian and

Lkin�mix = �1

2
sin ✏X̂µ⌫B̂

µ⌫ (2.2)

LH�portal = �1

2
�HXX†XH†H (2.3)

LX = |DµX|2 � 1

4
X̂µ⌫X̂

µ⌫ � m2
XX†X � 1

4
�X
⇣
X†X

⌘2
(2.4)

L = i ̄�µ
⇣
@µ + igXX̂µ

⌘
 � m  ̄ (2.5)

�LRHN�portal =
1

2
MiNC

RiNRi +
h
Y ij
⌫ NRi`LjH

† + �iNRi X† + H.c.
i

(2.6)

gX , X̂µ and X̂µ⌫ are the gauge coupling, the gauge field and the field strength tensor of the dark U(1)X ,

respectively. B̂µ⌫ is the gauge field strength of the SM U(1)Y . We assume

m2
X > 0, �X > 0, �HX > 0, (2.7)

so that the local U(1)X remains unbroken and the scalar potential is bounded from below at tree level
4.

Either X or  is absolutely stable due to the unbroken U(1)X , and will be responsible for the

present relic density of nonbaryonic CDM. In our model, there is a massless dark photon which couples

to the SM U(1)Y gauge field by kinetic mixing. One can diagonalize the kinetic terms by taking a

linear transformation defined as [48]
 

B̂µ

X̂µ

!
=

 
1/ cos ✏ 0

� tan ✏ 1

! 
Bµ

Xµ

!
(2.8)

In this basis, SM U(1)Y charge is redefined as qY = q̂Y / cos ✏, and hidden photon does not couples SM

fields. However, dark sector fields now couples to SM photon and Z-boson. In the small mixing limit,

the couplings are approximated to

LDS�SM = gXqXt✏ ̄�
µ (cWAµ � sWZµ) + |[@µ � igXqXt✏ (cWAµ � sWZµ)] X|2 (2.9)

where t✏ = tan ✏, cW = cos ✓W and sW = sin ✓W with ✓W being the Weinberg angle. Hence, dark sector

fields charged under U(1)X can be regarded as mini-charged particles under electromagnetism after

the kinetic mixing term is removed by a field redefinition, Eq. (2.8).

Meanwhile, we can assign lepton number and U(1)X charge to RH neutrinos and dark fields as

shown in Table 1. Then, the global lepton number is explicitly broken by Majorana mass terms for the

field N  X

qL 1 1 0

qX 0 1 1

Table 1. Lepton number and U(1)X charge assignment

RH neutrinos. If Y⌫ and �i carry CP -violating phases, the decay of RH neutrinos can develop lepton

number asymmetry in both of visible and dark sectors. Since U(1)X is unbroken, the asymmetry in

the dark sector has a relation,

Y� + Y�X = 0 (2.10)

4Quantum corrections to the scalar potential will be discussed in Sec. 3.2.

– 4 –

Kinetic term diagonalization: 

⇒

(⇒ Relic density, direct/indirect searches)

(⇒ Lepto/darkogenesis?)
NR
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Phenomenolgy
(≈constraints)

Our model can address 
* Some small scale puzzles of CDM (Dark matter self-interaction) (αX, mX)

* CDM relic density (Unbroken dark U(1)X) (λ, λhx, mX,)

* Vacuum stability of Higgs potential (Positive scalar loop correction) (λhx)

* Direct detection (Photon and Higgs exchange)(ε, λhx)

* Dark radiation (Massless photon)(αX)

* Lepto/darkogenesis (Asymmetric origin of dark matter) (Yν, λ, M1, mX)

* Inflation (Higgs inflation type) (λhx, λX)

In other words, the model is highly constrained. 
53
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�T ⇠ 16⇡↵2
X

m2
X( )

1

v4
ln

2

4 m2
X( )v

3

q
4⇡⇢X( )↵3

X

3

5

From inner structure and kinematics of dwarf galaxies,

�max

T /m
dm

. 35 cm2/g

[Vogelsberger, Zavala and Leb, 1201.5892]

⇒

☛ If stable, .

“mΨ > mX” ⇒ Ψ decays.
“X”(the scalar dark field) = CDM

☛ For αX close to its upper bound, X-X* can explain some puzzles of collisionless CDM:
(i) cored profile of dwarf galaxies.
(ii) low concentration of LSB galaxies and dwarf galaxies.

[Vogelsberger, Zavala and Leb, 1201.5892]

↵X . 5⇥ 10�5
⇣ mX( )

300GeV

⌘3/2

• Constraints on dark gauge coupling

⌦ ⇠ 104 (300GeV/m ) � ⌦obs

CDM

' 0.26
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• CDM relic density

55

The late-time decay of ψ

X forms a symmetric DM.
(Non-) thermal freeze-out of X via Higgs portal

Excluded by X
enon100

Therm
al freeze-out

N
on-therm

al freeze-out

X⇤

 �1

NR

Y⌫

H⇤

`Li

�1 = �1(m , h�viXann, · · · )

Thermal(T 
d

> TX
fz

) : h�viX
ann

= h�vithermal

ann

Nonthermal(T 
d

< TX
fz

) : h�viX
ann

⇠ �

 
d

/nobs

X

( h�vi Xann >
5⇥

h�vi therm
al

ann

)
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• Vacuum stability (λhx)

with �HS ! �HX/2 and �S ! �X

[S. Baek, P. Ko, WIP & E. Senaha, JHEP(2012)]

56

�X

�HX

�H
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Log@mêGeVD
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Perturbativitiyvacuum stability

�X . 0.23

0.2 . �HX . 0.6

Perturbativitiy

[G. Degrassi et al., 1205.6497]
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Xenon100 (2012)

5 2 110

101 102 103

10!1

100

mX!GeV"

Λ H
X

#Σv%ann##Σv%ann,0

• DM direct search (ε, λhx, mX)
X

 N  N

X

X

 N  N

X

h �SI
N ,h =

�2
HX

64⇡

m2
rm

2
N

m2
Xm4

h

f2
q,h
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vacuum instability

perturbativity

Xenon100(2012) + structure formation
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Ε
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• Indirect search (λhx, mX)
- DM annihilation via Higgs produces a continum spectrum of γ-rays
- Fermi-LAT γ-ray search data poses a constraint

[X. Huang et al., 1208.0267]

10˚X10˚GC

58

In our model,

1  h�viXann
h�vithann

. 5

) h�viXann . 2⇥ 7.4⇥ 10�26cm3/sec

Br(XX† ! W+W�)

☛ Monochromatic γ-ray spectrum? 

h�vi��ann ⇠ 10�4h�viXann . 10�29cm3/sec

Too weak to be seen!
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Xenon100 (2012)

5 2 110

101 102 103

10!1

100

mX!GeV"

Λ H
X

#Σv%ann##Σv%ann,0

• Collider phenomenology (λhx, mX)
Invisible decay rate of Higgs is

�HX ⌧ 0.1

or

mh � 2mX . 0.5GeV

or kinematically forbidden

59

SM signal strength at collider is

cf., ( )

We may need Br(h ! XX†) ⌧ O(10)%, i.e.,
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• Dark radiation

60

# of extra relativistic degree of freedom
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[Planck Collaboration, arXiv:1303.5076]

Decoupling of dark photon
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• Lepto/darkogenesis (1/2)

61

(Genesis from the decay of RHN)
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• Lepto/darkogenesis (1/2)

/X⇤ /X⇤
/X⇤

/ / / 

61

(Genesis from the decay of RHN)
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• Lepto/darkogenesis (1/2)

/X⇤ /X⇤
/X⇤

/ / / 
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Light gray: narrow width approx. is invalid

1  h�vitot
ann

/h�vith
ann

. 5

White between blue lines:

Green lines: 

Correct BAU and CDM relic can be obtained.

Excluded by X
enon100

Y⌫1 = �1

(Genesis from the decay of RHN)
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Late-time decay of ψ → 

* Late-time decays of symmetric ψ and ψ-bar can generate 
a sizable amount of lepton number asymmetry. 

X⇤

 �1

NR

Y⌫

H⇤

`Li

T d ⌧ m 

�(Y�L) 6= 0

→ No wash-out!

(e.g : ✏L ⇠ 10�7,↵X ⇠ 10�5,m ⇠ 103TeV ! �(Y�L)

Y�L
⇠ 0.3 )

(Genesis from the late-time decay of ψ &ψ-bar)
• Lepto/darkogenesis (2/2)
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[⇠ m ]

[⇠ mX/20]

Thermal history 
(leptogenesis and DM production)
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• Higgs inflation in Higgs-singlet system

Lscalarp
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[Lebedev,1203.0156]
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Inflation at this flat region 

Canonically normalized Inflaton(Higgs) potential 
in Einstein frame 

�X . 0.23

0.2 . �HX . 0.6

where ⇠
h

, ⇠
x

� 1
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* Fermion dark matter requires a real scalar mediator which is mixed with SM Higgs.
* Unbroken U(1)X allows a sizable contribution to the extra radiation.

Variations

= a singlet real scalar

Signal strength

because of mixing in Higgs sector

Assume the decay of Higgs to DMs is forbidden.

And Universal Suppression

Note that “mu < 1” if CDM is fermion, 
whether U(1)X is broken or not
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Summary
• Stability of weak scale dark matter requires 

a local symmetry.

• The simplest extension of SM with a local 
U(1) has a unique set of renormalizable 
interactions.

• The model can be an alternative of NMSM, 
address following issues.
* Some small scale puzzles of standard CDM scenario
* Vacuum stability of Higgs potential
* CDM relic density (thermal or non-thermal)
* Dark radiation
* Lepto/darkogenesis
* Inflation (Higgs inflation type)
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Local Gauge Principle 
Enforced to DM Physics
in the models presented

We got a set of predictions 
consistent with all the 

observations available so far

Nontrivial and Interesting possibility
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Signal Strengths µ ≡
σ · Br

σ
SM

· Br
SM

ATLAS CMS
Decay Mode (MH = 125.5 GeV) (MH = 125.7 GeV)

H → bb −0.4± 1.0 1.15± 0.62
H → ττ 0.8± 0.7 1.10± 0.41
H → γγ 1.6± 0.3 0.77± 0.27

H → WW ∗ 1.0± 0.3 0.68± 0.20
H → ZZ ∗ 1.5± 0.4 0.92± 0.28
Combined 1.30± 0.20 0.80± 0.14

〈µ〉 = 0.96± 0.12
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