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Introduction

Cold relic axions resulting from vacuum misalignment in the early
universe is a popular and viable candidate to dark matter.

Provided that the reheating temperature after inflation is below the
Peccei-Quinn transition scale, in later times the axion evolves as

a(t) = a0 sinmat, k = 0 ρ ≃ a20m
2
a

ρ ≃ 10−10eV4, ρ∗ ≃ 10−4eV4 (30 to 100 kpc)

The axion background provides a very diffuse concentration of a
pseudoscalar condensate that affects the propagation of particles
coupled to it such as photons. Can it be detected ?

In this talk I will discuss several non-standard effects that might

help.
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Outline

Introduction

Propagation in a cold axion background

Three physical effects

1 Momentum gaps: some photon wavelengths cannot exist
2 Magnetic field in a cold condensate: changing some

characteristics of the Primakoff effect
3 Bouncing off the axion wall: trapped photons

Conclusions and outlook
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Propagation of photons in a cold axion background

Let us consider electromagnetism in a background where Lorentz
symmetry is broken by means of a time-like vector

L = LINV + LLIV

LINV = − 1
4 F

αβFαβ LLIV = 1
2 m

2
V Aµ A

µ + 1
2 ηαAβF̃

αβ

E.o.M.:
{
g λν

(
k2 −m2

V

)
+ i ελναβ ηα kβ

}
Ãλ(k) = 0

We can build two complex and space-like chiral polarization
vectors εµ±(k) which satisfy the orthonormality relations

− gµν εµ ∗
± (k) εν±(k) = 1 gµν ε

µ ∗
± (k) εν∓(k) = 0

In addition we have

εµT (k) ∼ kµ εµL(k) ∼ k2ηµ − kµη · k

gµν εµ ∗

A (k) ενB(k) = gAB g AB εµ ∗

A (k) ενB(k) = g µν
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Propagation of photons in a cold axion background

Let us now assume that ηα = ∂αa(t) = ηδα0

The polarization vectors of positive and negative chirality are
solutions of the vector field equations if and only if

k
µ
± = (ωk±, k) ωk± =

√
k2 +m2

γ ± η|k|

In order to avoid problems with causality we want k2± ≥ 0.
Photons of positive chirality have no problems with causality
Photons of negative chirality exist as asymptotic states iff

|k| < m2
V

η

For mV = 0 they cannot exist as asymptotic states. Changing

η → −η exchanges the chirality of photons.
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Propagation of photons in a cold axion background

Axion-photon coupling:

∆L = −gaγγ
α

π

a0

fa
cos(mat) ǫ

ijkAiFjk

where ∂αa(t) = (η(t), 0, 0, 0), and η(t) = η0 cosmat. Popular
models such as DFSZ and KSVZ all give gaγγ ≃ 1.

If momenta are large k >> ma it makes sense to treat the axion
background adiabatically with a (quasiconstant) derivative

-6 -4 -2 2 4 6
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1.0

It makes sense to approximate the sinusoidal variation piecewise by
a square profile η(t) = ±η0 with period 2π/ma
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Propagation of photons in a cold axion background

Astrophysical bounds:

fa > O(1010) GeV, 10−2eV > ma > 10−6 eV

⇒ |η| ≃ α

√
ρa

fa
≃ 10−23 − 10−24eV

Direct bounds are weaker:

|η| < 10−20eV

η is the relevant quantity for all the effects discussed in this talk.

All the considerations in this presentation refer to vacuum
propagation, i.e. we take mγ = 0. Everything is computed at tree
level in QED but non-linearities such as the ones described by the
Euler-Heisenberg effective lagrangian could be included.
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Forbidden wavelengths

a(t) changes sign with a period 2π/ma. Let us approximate the
sinusoidal variation and solve exactly for the propagating modes

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

The equation for Âν(t, ~k) is
[
gµν(∂2

t + ~k2)− iǫµναβηαkβ

]
Âν(t, ~k) = 0

Âν(t, ~k) =
∑

λ=+,−

fλ(t)εν(~k , λ)

We write f (t) = e−iωtg(t) and demand that g(t) have the same
periodicity as η(t). This requires

cos(2ωT ) = cos(αT ) cos(βT )−α2 + β2

2αβ
sin(αT ) sin(βT ), T =

π

Ma

, α,
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Forbidden wavelengths

As η0/ma grows there is a surprise (η0 = 2gaγγ
α
π
a0m
fa

)

cos(2ωT ) = cos(αT ) cos(βT )− α2 + β2

2αβ
sin(αT ) sin(βT )

Some photon wavelengths are forbidden in the universe if there is a
cold axion background.
Can this be seen in table-top experiments?

Domènec Espriu Propagation in axion condensates 9



Adding a magnetic field

If η0 = 0 the theoretical technology is well known. Used to analyze
the results of CAST, ADMX, ALPS ....

Interaction with the cold axion background implies that we need to
take into account

Relevant parameters

b = 2gaγγ
α

π

B

fa
η0 = 2gaγγ

α

π

a0m

fa

assuming fa = 107 GeV

B = 10 T ⇒ b ≤ 10−15 eV η0 ≤ 10−20 eV
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Adding a magnetic field

The ratio b/η0 is governed by the ratio B/a0ma. Observationally
η0 << b so it makes sense to treat η as a perturbation on the
solution with b 6= 0




∂2
t + k2 +m2 −ib∂t 0

−ib∂t ∂2
t + k2 ηk

0 ηk ∂2
t + k2







â

i Â1

Â2


 =




0
0
0




We try a solution of the form: (â, i Â1, Â2) = e−iωt(x ,X1,X2):




−ω2 + k2 +m2 ωb 0
ωb −ω2 + k2 ηk
0 ηk −ω2 + k2







x

X1

X2


 =




0
0
0




Reduced magnetic field: ~b = (b, 0, 0)
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Adding a magnetic field

Cold axion background oscillations change η ↔ −η with
periodicity ∼ 1/ma

Within each period the proper frequencies are (η ≪ b ≪ {m, k})

ω2
a ≈ k2 +m2 + b2 +

b2k2

m2
+

b2η2k4

m6
+

b2η2k2

m4

ω2
1 ≈ k2 − b2η2k4

m6
− b2η2k2

m4
− b2k2

m2
− η2m2

b2

ω2
2 ≈ k2 +

η2m2

b2

To be compared with
w2
± = k2 ± ηk

(NB: do not attempt to take the b → 0 limit in the general case)
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Adding a magnetic field

Numerically for b = 10−15 eV (10T ), η = 10−24 eV and k = 1
keV, the most relevant terms are

ω2
a ≈ k2 +m2 +

b2k2

m2

ω2
1 ≈ k2 − b2k2

m2
− η2m2

b2

ω2
2 ≈ k2 +

η2m2

b2

The splitting between the two polarizations goes as

ω2
1 − ω2

2 ≈ −b2k2

m2
− 2

η2m2

b2

The relevance of the CAB is somehow enhanced by the magnetic
field and dominates for

b < ma

√
η

k
≃ 10−14ma
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Adding a magnetic field

There is also a change in the plane of polarization

∼ ηm2

b2k

(for “large” axion masses, the actual result is more complicated)
The angle can be as large as 10−3
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Crossing the boundary

Recall the modification to QED brought about by an axion-like
background

∆L =
1

2
ηαAβF̃

αβ

This piece changes slightly the dispersion relation of photons. We
will now explore different possible axion backgrounds (other than
the cold background oscillating in time with period ∼ 1/ma)

− 1
4 F

µν(x)F̃µν(x) ζλx
λ θ(− ζ · x) ↔ 1

2 ζµAν(x)F̃
µν(x) θ(− ζ · x),

This associates a space-like boundary with a space-like CS vector

ζµ = ζ × (0,~a) |~a| = 1

(LIV vector renamed from ηµ to ζµ to avoid confusion with CAB)
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Crossing the boundary

Compact dense stars filled by axions with density degrading to
their surface?
Galactic dark matter profiles?

Axial chemical potential for a fireball in heavy ion collisions (scales
completely different!)?
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Crossing the boundary

Even if not totally realistic let us use a linearly varying background
(it can be solved easily)
For simplicity let us place the boundary “wall” in the X̂ direction

Matching on the boundary ζ · x = 0

δ(ζ · x)
[
Aµ
vacuum(x)− A

µ
CS

(x)
]
= 0
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Crossing the boundary

Abnormal dispersion laws for different polarizations in the parity
broken phase





k1L = k10 =
√
ω2 −m2 − k2⊥

k1+ =

√
ω2 −m2 − k2⊥ + ζ

√
ω2 − k2⊥

k1− =

√
ω2 −m2 − k2⊥ − ζ

√
ω2 − k2⊥

Usual dispersion law in the normal phase

k1 =
√

ω2 −m2 − k2⊥

Different dispersion relations lead to non-trivial reflection and
transmision coefficients
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Crossing the boundary

M2 ≡ kµk
µ = m2 − ζ

√
ω2 − k2⊥

k1L =

√
(M2 −m2)2

ζ2
−m2 k1± =

√
(M2 −m2)2

ζ2
−M2

In this notation the ± dispersion relations apparently coincide but
M2 has different domains of definition

M2
+ < (

√
m2 +

ζ2

4
− ζ

2
)2 M2

− < (

√
m2 +

ζ2

4
+

ζ

2
)2

Then

κref (M
2) =

|
√

(M2−m2)2

ζ2
−M2 −

√
(M2−m2)2

ζ2
−m2|

|
√

(M2−m2)2

ζ2
−M2 +

√
(M2−m2)2

ζ2
−m2|
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Crossing the boundary

Photon escaping from the axion sphere.

Recall M2/ζ = m2/ζ2 −
√

ω2 − k2⊥

Figure: Reflection coefficient for photons (m = 0) escaping. The
kinematically forbidden region is shaded
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Crossing the boundary

Figure: Reflection coefficient for vector mesons (m 6= 0escaping. The
scale is the relevant one for heavy ion collisions

Domènec Espriu Propagation in axion condensates 21



Crossing the boundary

In the context of axion physics the effect seems to depend crucially
on a ratio of two numbers that are both small: mV and ζ

It is also quite interesting to study to photons attempting to enter
the axion-sphere.

The astrophysical consequences of the above results yet to be
worked out...
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