

Dark Matter and γ -ray Line Searches with Fermi LAT

Michael Gustafsson UNIVERSITÉ LIBRE DE BRUXELLES

On behalf of The Fermi LAT Collaboration

June 28th, 2013

9th Patras Workshop on Axions, WIMPs and WISPs

Schloß Waldthausen 24- 28 June 2013

Dark Matter

General Sector Secto

Weakly Interacting Massive Particle

Any massive particles with 'sizable' interactions, freeze-out from chemical equilibrium, leaving a relic abundance

- Exceptions: p-wave, coannihilation, resonances, thresholds, Sommerfeld effect...

DM particle candidate with EW couplings, typical mass of 1 GeV to 100 TeV, with relic abundance thermally produced.

t

WIMP paradigm: gamma-rays

Indirect Dark Matter Search

Flux from annihilating DM particles

What we observe

$$\Phi_{\chi}(E,\psi) = \frac{\langle \sigma_{\chi} v \rangle}{4\pi} \sum_{f} \frac{dN_{f}}{dE} B_{f} \int_{LOS} dl(\psi) \frac{1}{2} \frac{\rho(l)^{2}}{m_{\chi}^{2}}$$

Gustafsson et al. PRL 99.041301

Fermi Large Area Telescope (LAT) On board the Fermi Gamma-ray Space Telescope

– Launched June 2008, mission to at least 2016

Pair conversion detector

- Silicon strip tracker
 (with tungsten converter foils)
- Electromagnetic CsI calorimeter
- Anti-coincidence shield (plastic scintillators to veto charged particles)

□ Key features for DM searches

- Effective area ~0.8 m²
- Energy range: 20 MeV to >300 GeV resolution: $\sigma_{\rm E}$ <15% (for E>10 GeV)
- Angular resolution: <0.2° (for E>10 GeV)
- Full-sky coverage (~2.4sr)
 - All sky in 2 orbits (3 hrs)

The Gamma-ray Universe as seen by Fermi-LAT

Are there any hiding DM signals?

Galactic

Point Sources

Isotropic

...DM signal?

Are there any hiding DM signals?

Galactic

Point Sources

Isotropic

...DM signal?

Search for gamma-ray lines

Tentative Observation of a Gamma-ray Line at the Fermi-LAT

Tentative Observation of a Gamma-ray Line at the Fermi-LAT

Max-Planck-Institut für Physik, München

Tentative Observation of a Gamma-ray Line at the Fermi-LAT

New Fermi-LAT line search

Fermi LAT collaboration [ArXiv:1305.5597]

Sky Region of Interest (ROI)

Search in 5 ROIs:

- Contracted NFW, 3° circle (R3) 30°
- Einasto Optimized (R16)
- NFW Optimized (R41)
- Isothermal Optimized (R90) [®]
- DM Decay Optimized (R180)

Spatial distribution for 10-100 GeV energy

Monochromatic Line Search

Line search from 5-300 GeV - Use a sliding $\pm 6\sigma_{\rm E}$ energy 10 E² Φ (GeV cm⁻² s⁻¹ sr¹) window technique - Energy steps of 0.5 σ_E 10^{1} Background modeled as single power-law E_r (GeV) (in each energy window) Fitting window ($\pm 6\sigma_E$) • Standard: "1D" PDF for the line shape SIMULATION $C(E') = n_{sig} D_{eff}(E'|E\gamma) +$ Number of Counts Signal + $\frac{n_{bkg}}{c_{bkg}} \left(\frac{E'}{E_0}\right)^{-\Gamma_{bkg}} \eta(E')$ power law Effective Area normalization Corrections $-D_{eff}$, effective energy dispersion - nsig, nbkg and *Ibkg* free in fits 30 40 60

Energy (GeV)

New "2D" PDF for the Energy Dispersion

Updated analysis, adds a 2nd dimension to line model: P_E

- \bullet $P_{\mbox{\scriptsize E}}$ is the probability that measured energy is close to the true energy
- Line shape determined event by event from a 2D pdf function of both E and P_E

Predicted Spectrum = Signal Model

$$\mathbf{C}(\mathbf{E}, \mathbf{P}_{\mathrm{E}}) = \mathbf{n}_{\mathbf{sig}} \mathbf{D}_{\mathbf{eff}}(\mathbf{E}, \mathbf{P}_{\mathbf{E}} | \mathbf{E} \gamma)$$

$$- \frac{\mathbf{n_{bkg}}}{\mathbf{c_{bkg}}} \left(\frac{\mathbf{E}}{\mathbf{E_0}}\right)^{-\Gamma_{\mathbf{bkg}}} \eta(\mathbf{E})$$

Including P_E in energy dispersion model

- ⇒ ~15% improvement to signal sensitivity (when there is signal) and counts upper limit (when there is no signal).
- ⇒ Includes a more complete understanding of the expected shape of a gamma-line

Data Improvement

26

Energy Shift v. Time • **Data reprocessed** (P7CLEAN REP) 17 GeV ✓ Updated calorimeter response 31 GeV 0.04 56 GeV ➡ Affects energy reconstruction: 0.03 up to 5% shift in energy scale 0.02 Improves PSF at high energies 0.01 (80%+ overlap of events after reprocessing) Preliminar -0.0 260 280 300 320 340 • **DATA SELECTION** (P7CLEAN REP) MET [s]

Selection	Celestial data	Limb data
Observation Period	2008 August 4–2012 April 4	2008 August 4–2012 October 6
Mission Elapsed Time ^a (s)	[239557447, 356434906]	[239557447, 371176784]
Energy range (GeV)	[2.6, 541]	[2.6, 541]
Zenith range (deg)	$\theta_{\rm z} < 100$	$111 < \theta_z < 113$
Rocking angle range (deg) ^b	$ heta_{ m r} < 52$	$ \theta_{\rm r} > 52$
Data quality cut ^c	Yes	Yes
Source masking (see text)	Yes	No

Signal significance & Trial Factors

Test statistic (TS) and local significance (s_{local}) by ratio of —unbinned extended— maximum likelihood of signal to null hypothesis fit

$$TS = 2 \ln \frac{\mathcal{L}(n_{\text{sig}} = n_{\text{sig,best}})}{\mathcal{L}(n_{\text{sig}} = 0)}, \quad \mathcal{L} = \frac{e^{-C_{\text{tot}}}}{n!} \prod_{i} C(E'_{i}, P_{E_{i}})$$
$$s_{\text{local}} = \sqrt{TS}, \quad 95\% \text{ CL when } \Delta TS = -2.71 \text{ from best fit}$$

Trials factor = P_{global}/P_{local}. 396 trials (5 ROI & 0.5σ_E steps) reduces to effectively 109 independent trials

(Independency:
ROIs ~87%,
$$\Delta E_{\gamma}$$
 steps ~32%)

Line Search Results

Spectral line 95% CL Flux upper limit

95% CL limits on $\langle \sigma v angle_{\gamma\gamma}$ and ${\cal T}_{\gamma\nu}$

 4.5σ (local) 1D fit at 130 GeV with 3.7 year unreprocessed data 1D PDF (no use of P_E), P7CLEAN data

As Weniger's significance 4.6σ

- 4.5σ (local) 1D fit at 130 GeV with 3.7 year unreprocessed data 1D PDF (no use of P_E), P7CLEAN data
- 4.1σ (local) 1D fit at 133 GeV with 3.7 year reprocessed data 1D PDF (no use of P_E), P7REP_CLEAN

Peak shifts from 130 to ~133 GeV

- 4.5σ (local) 1D fit at 130 GeV with 3.7 year unreprocessed data 1D PDF (no use of P_E), P7CLEAN data
- 4.1σ (local) 1D fit at 133 GeV with 3.7 year reprocessed data 1D PDF (no use of P_E), P7REP_CLEAN
- 3.3σ (local) 2D fit at 133 GeV with 3.7 year reprocessed data 2D PDF (P_E in data), P7REP_CLEAN

Peak 'too' narrow

- 4.5σ (local) 1D fit at 130 GeV with 3.7 year unreprocessed data 1D PDF (no use of P_E), P7CLEAN data
- 4.1σ (local) 1D fit at 133 GeV with 3.7 year reprocessed data 1D PDF (no use of P_E), P7REP_CLEAN
- 3.3σ (local) 2D fit at 133 GeV with 3.7 year reprocessed data 2D PDF (P_E in data), P7REP_CLEAN
- 2.9 σ (local) 2D fit at 133 GeV with 4.4 year reprocessed data 2D PDF (P_E in data), P7REP_CLEAN

Few new events

Width of the 130 GeV feature?

Artificially, let a width scale factor (S_{σ}) float in fit while preserving line shape

 $s_{\sigma} = 0.32^{+0.30}_{-0.13}(95\% CL)$

[4.1 σ (local), s/b~1 -2D fit @133 GeV, 3.7yrs reprocessed data in ROI R3]

- Feature is ~0.32 times narrower than expected energy dispersion of a monochromatic line
- Best-fit width not compatible with the dispersion found in beam tests and detector simulations

Control Regions (No DM signal regions)

Earth Limb: expect a bright smooth power-law spectrum

Weaker feature around 130 GeV

2.0σ, s/b≈14±7% (GC:3.3σ, s/b≈58±18%)

Galactic Disk: expect bright and astrophysical source dominatedNo features seen around 130 GeV

Systematic Uncertainties

Three classes of possible effects:

1.signal to flux conversion $\delta \mathcal{E}$; e.g. exposure, effective area 2.signal strength rescaled δn_{sig} ; e.g. line shape, search step-size 3.induce or mask a signal δf ; e.g. bkg curvature, CR contamination

	Quantity	Energy	R3	R16	R41	R90	R180
1	$\delta \mathcal{E}/\mathcal{E}$	5 GeV	± 0.10	± 0.10	± 0.11	± 0.12	± 0.14
L	$\delta \mathcal{E}/\mathcal{E}$	$300 \mathrm{GeV}$	± 0.10	± 0.10	± 0.12	± 0.13	± 0.16
2	$\delta n_{ m sig}/n_{ m sig}$	All	$^{+0.07}_{-0.12}$	$^{\mathrm{+0.07}}_{\mathrm{-0.12}}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$
	δf	$5 \mathrm{GeV}$	± 0.020	± 0.020	± 0.008	± 0.008	± 0.008 .
3	δf	$50 \mathrm{GeV}$	± 0.024	± 0.024	± 0.015	± 0.015	± 0.015
	δf	$300 \mathrm{GeV}$	± 0.032	± 0.032	± 0.035	± 0.035	± 0.035
	2.2σ facture @ $1220 c$						atic effect o
	in R3 have much larger!					explain th	e 3.1σ fea

signal fraction f >40%

@ 6.3 GeV w/ f ~1%

37

Spectral line search: near term prospect

Fermi LAT: improv event analysis (Pass8) and weekly limb observations

- White paper proposals on possible observing modifications
 - LAT-team http://fermi.gsfc.nasa.gov/ssc/proposals/
 - Weniger et al. ArXiv:1305.4710

Fermi-LAT upcoming Pass 8:

- ~25% increase in gamma-data
- Possibly better energy resolution
- Mitigate CAL/TKR miss-alignment
- White paper proposal: Optimize Galactic centre observation-angle and exposure

Future gamma-ray measurements

 H.E.S.S. II: Cherenkov telescope.
 50 hours of GC observation could be enough to rule out/confirm the 133 GeV feature at 5σ

- In operation since July 2012

CTA: km² Cherenkov Telescopes Array. 50GeV-100 TeV, 5-10 times as sensitive as current ACT

- Production phase 2014

CALET: On ISS. 10GeV-10TeV, ~2% energy res., area 0.5m²/5.8?

– Launch planned 2014

□ DAMPE: Chinese satellite. 5GeV-10TeV ~1% energy res., area ~0.3m²

- Launch planned 2015-2016

Gamma-400: Russian satellite.

0.1GeV-10TeV, $\sim 1\%$ energy res., area $\sim 0.5m^2$.

- Launch planned 2018

Summary

- ✓ Cosmic gamma-ray searches provide a promising probe to discover canonical WIMP dark matter
 - Energy spectrum \Rightarrow reveals intrinsic WIMP properties
 - Flux distribution \Rightarrow reveals DM distribution
- ✓ Discovery of a 130 GeV spectral line near the Galactic center would be a striking signal of a dark matter particle
 - Fermi-LAT finds no global significant (<1.6σ) spectral line from 5–300 GeV in 5 ROIs
 - Some aspects of a 133 GeV line-like feature require more follow up
 - Significantly narrower than expected energy resolution
 - Similar feature seen in Limb
 - Does not appear in the inverse ROI
- ✓ Upgraded Fermi-LAT data, HESS II and next generation instruments will provide exciting results