Axion-like Particles from String Compactifications

MICHELE CICOLI

Bologna University and ICTP Trieste

9th PATRAS Workshop, Mainz, 24 Jun 2013

Based on:

- 1. Axiverse and QCD axion: MC,Goodsell,Ringwald, arXiv:1206.0819 [hep-th]
- 2. Axions as dark radiation: MC,Conlon,Quevedo, arXiv:1208.3562 [hep-th]

Introduction

Two longstanding problems of CY compactifications:

- 1. Moduli stabilisation
- 2. Derivation of GUT- or MSSM-like constructions
- Type II theories promising because of D-branes and O-planes
- Moduli stabilisation is a global issue ↔ model building is a local issue ⇒ physics decouples, separate study
- Focus on type IIB
 - Viable mechanisms to fix the moduli (KKLT, LVS and others)
 - Semi-realistic local models on the market:
 - 1. Magnetised intersecting D-branes wrapping cycles in the geometric regime
 - 2. Fractional D-branes at CY singularities
- Two solutions can be combined within a globally consistent compactification with a rigorous description of the CY background

Chiral model building and axions

- Moduli stab compatible with chiral model building can be obtained within the LARGE Volume Scenario (LVS)
- Explicit LVS compactifications with fluxes, D3/D7-branes and O3/O7-planes:
 - Description of the compact CY by toric geometry [MC,Kreuzer,Mayrhofer]
 - Global consistency: D5- & D7-tadpole, torsion charges and FW anomaly cancellation
 - Two possibilities for the visible sector:
 - 1. D7s in the geometric regime [MC,Mayrhofer,Valandro]
 - 2. D3s at del Pezzo singularities [MC,Krippendforf,Mayrhofer,Quevedo,Valandro]
 - Realisation of LVS axiverse with explicit QCD axion candidates [MC,Goodsell,Ringwald]
 - Dark radiation from light axions [MC,Conlon,Quevedo]
 - $\mathcal{O}(200 \,\mathrm{eV})$ cosmic axion background and diffuse X-ray excess in galaxy clusters from axion- γ conversion [Conlon,Marsh]
 - Axion dilution and non-thermal dark matter from moduli decays [Allahverdi,MC,Dutta,Sinha in preparation]

Axions and strings

- **QCD** axion a most plausible explanation of the strong CP problem
- Axion decay constant: $10^9 \,\mathrm{GeV} \lesssim f_a \lesssim 10^{12} \,\mathrm{GeV}$
- Astrophysical hints point to light ALPs: $m_{a_i} ≤ 10^{-(9 \div 10)} \, \text{eV}$ and $f_{a_i} \sim 10^{8 \div 9} \, \text{GeV}$
- \Rightarrow QCD axion associated with a very high energy scale
- \Rightarrow search for it in UV completions of the SM such as string theory
- String compactifications have QCD axion candidates and even an 'axiverse' [Arvanitaki et al]
- Strong constraints on isocurvature fluctuations: if $H_{inf} \sim M_{GUT}$ (large tensor modes observed by PLANCK), the axiverse is ruled out!
 - Q1: Is the axiverse a generic feature of string compactifications?
 - Q2: Can find a concrete model with an explicit QCD axion?
 - Q3: Can ultra-light axions be detected?

Axions and strings

- Hard to build explicit string models with a successful QCD axion plus light ALPs
- Focus on type IIB flux compactifications since moduli stabilisation is more under control
- Low-energy spectrum contains many closed string axions (KK zero modes of antisymmetric forms) of order $h^{1,1} \sim \mathcal{O}(100)$ for a generic CY \Rightarrow expect many ALPs [can have also open string axions (more model-dependent)] BUT:
- 1. Type IIB on a CY three-fold gives an $\mathcal{N} = 2$ 4D EFT \Rightarrow get an $\mathcal{N} = 1$ EFT via an orientifold projection \Rightarrow several axions removed from the spectrum
- 2. Each axion *a* comes with the corresponding 'saxion' τ : $T = \tau + ia \Rightarrow$ need to fix the saxion with $m_{\tau} \gtrsim O(10)$ TeV (CMP) \Rightarrow the axions might become too heavy!
- 3. Axionic shift symmetry broken only by non-perturbative effects \Rightarrow if τ is fixed perturbatively, a is massless; if τ is fixed by non-perturbative effects, a gets the same mass of the order $m_{3/2}$ too heavy!
- 4. Axions can be eaten up by anomalous U(1)s (Green-Schwarz mechanism)
- 5. Hard to get $f_a \lesssim 10^{12}$ GeV since generically $f_a \sim 10^{15}$ GeV [OK if axions are diluted]

Moduli stabilisation

- Type IIB closed string moduli: axio-dilaton S, cx str moduli U_{\alpha}, \alpha = 1, ..., h^{2,1},
 K\u00e4hler moduli T_i = \alphi_i + i a_i, \alphi_i = \vee Vol(D_i), \alpha_i = \int_{D_i} C_4, \u00e4 = 1, ..., h^{1,1}
- \blacksquare S and U fixed at semi-classical level by background fluxes
- No-scale structure \Rightarrow T-moduli flat at tree-level
- Sources for Kähler moduli stabilisation:

$$V = V_D + V_F^{\text{tree}} + V_F^{\text{pert}} + V_F^{\text{np}}$$

- $V_D \sim \mathcal{O}(1/\mathcal{V}^2)$: D-term potential
- $V_F^{\text{tree}} \sim \mathcal{O}(1/\mathcal{V}^2) = 0$: no-scale structure
- $V_F^{\text{pert}} \leq \mathcal{O}(1/\mathcal{V}^3)$: perturbative corrections (axions kept massless)
- $V_F^{np} \leq O(1/\mathcal{V}^3)$: non-perturbative corrections (axions get massive)
- At leading order in $1/\mathcal{V}$: $V_D = 0$ fixes some moduli \Rightarrow corresponding axions get eaten up by anomalous U(1)s
 - At subleading order minimise $V_F \Rightarrow$ Break SUSY

Visible sector in the geometric regime

Simplest LVS realisation

Relevant moduli:

- τ_b : volume mode \rightarrow light ALP
- au_{np} : diagonal dP divisor o heavy axion
- τ_{vs1} and τ_{vs2} : 2 intersecting rigid divisors \rightarrow QCD axion + axion eaten by U(1)
- Overall volume: $\mathcal{V} = \tau_b^{3/2} \tau_{\rm np}^{3/2} (\tau_{\rm vs1} x \, \tau_{\rm vs2})^{3/2} \tau_{\rm vs2}^{3/2} \simeq \tau_b^{3/2}$
- Visible sector: 2 stacks of intersecting D7s wrapping au_{vs1} and au_{vs2}
- Gauge fluxes induce chirality and just 1 moduli-dependent FI-term

$$\xi \propto \sqrt{\tau_{\rm vs2}} - x\sqrt{\tau_{\rm vs1} - x\,\tau_{\rm vs2}}$$

- D-term ($\xi = 0$) fixes a combination of τ_{vs1} and τ_{vs2}
- Corresponding axion eaten up
- Modulus fixed gets an $\mathcal{O}(M_s)$ mass \Rightarrow EFT in terms of τ_b , τ_{np} and τ_{vs}

LVS moduli fixing

Leading F-term potential from α' + non-pert. corrections:

$$V \sim \frac{\sqrt{\tau_{\rm np}}}{\mathcal{V}} e^{-\frac{4\pi\tau_{\rm np}}{N}} - W_0 \frac{\tau_{\rm np}}{\mathcal{V}^2} e^{-\frac{2\pi\tau_{\rm np}}{N}} + \frac{W_0^2 \xi}{q_s^{3/2} \mathcal{V}^3}$$

Fix
$$\mathcal{V}$$
 and $au_{
m np}$ at $au_{
m np} \sim g_s^{-1}$ and $\mathcal{V} \sim W_0 \, e^{rac{2\pi}{N g_s}}$

- AdS minimum with spontaneous SUSY breaking
- Minkowski vacua via D-term uplifting or instantons at sing. [MC,Maharana,Quevedo,Burgess]
- Heavy axion a_{np} with a mass of order $m_{3/2}$ + massless volume axion a_b
- Subleading order: string loops fix $\tau_{vs} = \alpha_{vs}^{-1} \sim \mathcal{O}(10)$
- Massless local axion $a_{vs} \Rightarrow n_{ax} = 2$ light axions ($a_b + a_{vs}$)
- ▶ For $h^{1,1} \sim O(100)$ expect n_{ax} very large \Rightarrow LVS axiverse with many light axions
- One axion is the QCD axion and the others get a tiny mass via higher order NP effects

SUSY breaking and mass spectrum

- SUSY broken by moduli F-terms with $F^{vs} \sim m_{3/2} M_P \neq 0 \Rightarrow$ local SUSY breaking
- Soft terms generated by gravity mediation: $M_{\rm soft} \sim m_{3/2} / \ln \mathcal{V} \sim W_0 M_P / (\mathcal{V} \ln \mathcal{V})$
- For $W_0 \sim 1$ and $\mathcal{V} \sim 10^{14} \Rightarrow M_{\text{soft}} \sim \mathcal{O}(1)$ TeV and $M_s \sim M_P / \sqrt{\mathcal{V}} \sim 10^{11}$ GeV
- Mass spectrum:
 - $\blacksquare m_{\tau_{
 m vs2}} \sim m_{a_{
 m vs2}} \sim M_s \sim 10^{11}~{
 m GeV}$
 - $m_{\tau_{np}} \sim m_{a_{np}} \sim M_P \ln \mathcal{V} / \mathcal{V} \sim 100 \text{ TeV}$
 - $\blacksquare m_{3/2} \sim 10~{\rm TeV}$
 - \checkmark $M_{\rm soft} \sim 1 {\rm ~TeV}$

 - $m_{\tau_b} \sim M_P / \mathcal{V}^{2/3} \sim 1 \text{ MeV}$
 - $m_{a_{\rm vs}} \sim m_{\pi} f_{\pi} / f_{a_{\rm vs}} \sim 1 \text{ meV}$ • $m_{a_b} \sim M_P e^{-2\pi \mathcal{V}^{2/3}} \sim 0$
 - $\tau_{\rm vs}$ and τ_b lighter than 10 TeV \Rightarrow might suffer from CMP
 - $a_{\rm vs}$ good QCD axion candidate

Light axions

Axion decay constants:

$$f_{a_b} \simeq \frac{M_P}{4\pi \mathcal{V}^{2/3}} \simeq \frac{M_{\rm KK}}{4\pi} \simeq 10^9 \,{\rm GeV} \qquad f_{a_{\rm vs}} \simeq \frac{M_s}{\sqrt{4\pi}} \simeq 10^{10} \,{\rm GeV}$$

9 $a_{\rm vs}$ is a perfect QCD axion candidate

 \blacksquare a_b cannot be the QCD axion since its anomaly coefficient is too small: $k_b \sim V^{-2/3}$

Axion coupling to visible sector gauge bosons

$$\mathcal{L} = \left[\mathcal{O}\left(\frac{1}{M_P}\right) \, a_b + \mathcal{O}\left(\frac{1}{M_s}\right) \, a_{\rm vs} \right] F \wedge F = \left(\frac{k_b}{f_{a_b}} \, a_b + \frac{k_{\rm vs}}{f_{a_{\rm vs}}} \, a_{\rm vs}\right) F \wedge F$$

- a_b is a light and almost decoupled ALP
- **)** Notice that $k_{\rm vs} \sim 1$

Can have also n light ALPs with intermediate f_a : n+2 intersecting cycles and 1 D-term

- Detect QCD axion in microwave cavities and ALPs in future LSW experiments
- ALPs explain transparency of the Universe for TeV γ s and cooling of white dwarfs

Light moduli

Moduli couplings to visible sector gauge bosons:

$$\mathcal{L} \sim \left[\mathcal{O}\left(\frac{1}{M_P}\right) \phi_b + \mathcal{O}\left(\frac{\mathcal{V}^{1/2}}{M_P}\right) \phi_{\rm vs} \right] F_{\mu\nu} F^{\mu\nu}$$

 $\phi_{\rm vs}$ does not suffer from CMP ($m_{\phi_{\rm vs}} \sim 100$ GeV) since it couples as $1/M_s$

9 CMP for light modulus
$$\phi_b$$
 ($m_{\phi_b} \sim 1$ MeV)

- Possible solutions:
 - Dilution by the decay of heavy moduli [Kitano, Ratz, Murayama; Choi, Chun, Kim]
 - Dilution by thermal inflation [Lyth,Stewart]
 - \Rightarrow Axions do not form dark matter \Rightarrow no constraints from isocurvature fluctuations
 - Damping of initial oscillations due to higher-dim. operators [Linde]
 - \Rightarrow Axions form dark matter \Rightarrow constraints from isocurvature fluctuations

Visible sector at singularities

• Overall volume:
$$\mathcal{V} = au_b^{3/2} - au_{
m np}^{3/2} - au_{
m vs}^{3/2} \simeq au_b^{3/2}$$

Solution Visible sector cycle shrinks to zero size due to D-terms: $\xi \propto \tau_{vs} \Rightarrow \tau_{vs} \to 0$

- Corresponding axion gets eaten up
- au_b and au_{np} fixed as in the geometric case $\Rightarrow a_b$ is a light axion whereas a_{np} is heavy
- Main difference with geometric case: no local SUSY breaking since $F^{vs} \propto \xi = 0$
- Sequestered soft terms: $M_{\rm soft} \sim m_{3/2} / \mathcal{V} \ll m_{3/2}$
- Get TeV-scale SUSY for $V \sim 10^7$ ⇒ high string scale $M_s \sim M_P / \sqrt{V} \sim 10^{15}$ GeV
- Sight GUT scale: $M_{\rm GUT} \sim M_s \mathcal{V}^{1/6} \sim 10^{16} \text{ GeV}$

Mass spectrum

Different mass spectrum:

- $\ \, {\bf I}_{\tau_{\rm vs}} \sim m_{a_{\rm vs}} \sim M_s \sim M_P/\sqrt{\mathcal{V}} \sim 10^{15} \ {\rm GeV}$
- $m_{\tau_{\rm np}} \sim m_{a_{\rm np}} \sim M_P \ln \mathcal{V} / \mathcal{V} \sim 10^{12} \text{ GeV}$
- $\blacksquare m_{3/2} \sim M_P/\mathcal{V} \sim 10^{11}~{
 m GeV}$
- $\ \, { I \hspace{-.05in} I \hspace{-.05in} M_P} / \mathcal{V}^{2/3} \sim 10^6 \ \, {\rm GeV}$
- $M_{\rm soft} \sim m_{3/2}/\mathcal{V} \sim M_P/\mathcal{V}^2 \sim 1 \, {\rm TeV}$
- $m_{a_b} \sim M_P e^{-2\pi \mathcal{V}^{2/3}} \sim 0$
- No CMP since $m_{\tau_b} \sim 10^6 \, {\rm GeV} \gg 10 \, {\rm TeV}$
- Can get standard GUT theories
- High string scale allows for successful inflationary model building with N_e $\simeq 60$, n_s $\simeq 0.96$, $r \ll 1$, right amount of density perturbations and possibly power loss at large scales [Burgess,MC,Conlon,Pedro,Quevedo,Tasinato]

Axions in sequestered models

- In dP singularities all local axions are eaten up
- Only the volume axion might remain light: $m_{a_b} \lesssim M_P \, e^{-2\pi \mathcal{V}^{2/3}} \sim 0$
- What is the QCD axion?
- Consider singularities more complicated than dP
 - A local axion is left over and can be the QCD axion with $f_{a_s} \simeq M_s / \sqrt{4\pi} \simeq 10^{14} \text{ GeV}$
 - Interpretation of the two sets of the two sets the tw
- **P** The phase of an open string axion ϕ can be the QCD axion
 - **9** D-terms give a VEV to $|\phi|=f_a$: $V_D\simeq g^2\left(|\phi|^2-\xi
 ight)^2$ with $\xi= au_{
 m vs}/{\cal V}$
 - Solution Check that D-terms do not resolve the sing. obtained by setting $\xi = 0$ for $\langle |\phi| \rangle = 0$
 - If $0 \neq \langle |\phi| \rangle = \sqrt{\xi} \simeq \langle \sqrt{\tau_{\rm vs}} \rangle M_s \Rightarrow$ tension between $\langle \tau_{\rm vs} \rangle = 0$ and $\langle |\phi| \rangle \neq 0$

 - **Solume** Suppression can bring f_a at the intermediate scale

Bulk axions as dark radiation

Relativistic axions produced from the decay of the light volume mode

- When $H \sim m_{\tau_b}$ the volume mode starts to oscillate and stores energy
- au_b redshifts as matter ($ho \sim a^{-3}$) \Rightarrow it quickly dominates the energy density
- τ_b reheats the Universe when it decays out of thermal equilibrium
- The volume axion a_b is almost massless \Rightarrow it behaves as dark radiation! [MC,Conlon,Quevedo][Higaki,Takahashi]

Dark radiation expressed in terms of $N_{\rm eff}$ (effective number of neutrino-like species)

$$\rho_{\text{total}} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

In the SM $N_{\rm eff,SM} = 3.04$: dark radiation leads to $\Delta N_{\rm eff} \equiv N_{\rm eff} - N_{\rm eff,SM} > 0$

9 Observational hints for
$$\Delta N_{\text{eff}} \simeq 0.5 \div 1$$
 at $1 \rightarrow 2\sigma$:

- 1. BBN: $N_{
 m eff}=3.9\pm0.44$ at 1σ (D/H)
- 2. CMB: $N_{\rm eff} = 3.84 \pm 0.40$ at 1σ (WMAP9+ACT+SPT+BAO+HST)
- 3. New data: $N_{\text{eff}} = 3.52^{+0.48}_{-0.45}$ at 2σ (PLANCK+WMAP9+ACT+SPT+BAO+HST)

Volume decays to axions

1. Decays to volume axions (if not eaten by U(1)s)

$$\Gamma_{\Phi \to a_b a_b} \sim \frac{m_{\Phi}^3}{M_P^2}$$

Source for dark radiation!

2. Decays to local axions (if not eaten by U(1)s or lifted non-perturbatively)

$$\Gamma_{\Phi \to a_s a_s} \sim \frac{m_{\Phi}^3}{M_P^2}$$

3. Decays to open string axions θ ($C = \rho e^{i \theta}$ with $\langle \rho \rangle \neq 0$)

$$\mathcal{L} \supset -\sqrt{\frac{2}{3}} \left(\frac{\langle \rho \rangle}{M_P}\right)^2 \Phi \theta \Box \theta + \frac{4}{3} \left(\frac{\langle \rho \rangle}{M_P}\right)^2 \Phi \partial_\mu a_b \partial^\mu \theta$$

 $\oint \Phi \rightarrow \theta \theta$ decays are mass suppressed

Volume decays to Higgs bosons

Giudice-Masiero coupling in the Kähler potential

$$K = -3\ln(T_b + \bar{T}_b) + \frac{H_u\bar{H}_u + H_d\bar{H}_d}{(T_b + \bar{T}_b)} + \left(\frac{ZH_uH_d}{(T_b + \bar{T}_b)} + \text{h.c.}\right)$$

 $\blacksquare Z = 1$ if Higgs sector has a shift symmetry [Hebecker,Knochel,Weigand]

After canonical normalisation:

$$\mathcal{L} \supset \frac{1}{\sqrt{6}} \left[\Phi \left(\bar{H}_u \Box H_u + \bar{H}_d \Box H_d \right) + Z H_u H_d \Box \Phi + h.c. \right]$$

Last term gives the decay $\Phi \rightarrow H_u H_d$ with:

$$\Gamma_{\Phi \to H_u H_d} = \frac{2Z^2}{48\pi} \frac{m_{\Phi}^3}{M_P^2}$$

Volume decays to other particles

1. Decays to gauge bosons

Tree-level: $f_a = S + h_a T_{vs}$ (independent of T_b) – Loop level: $\left(\frac{\alpha_{vs}}{4\pi}\right) \ln \mathcal{V}$

$$\mathcal{L} \supset \left(\frac{\alpha_{\rm vs}}{4\pi}\right) \Phi F_{\mu\nu} F^{\mu\nu} \quad \Rightarrow \quad \Gamma_{\Phi \to \gamma\gamma} \sim \left(\frac{\alpha_{\rm vs}}{4\pi}\right)^2 \frac{m_{\Phi}^3}{M_P^2} \ll \frac{m_{\Phi}^3}{M_P^2}$$

2. Decays to matter scalars *C*

$$\Gamma_{\Phi\to C\bar{C}}\sim \frac{m_0^2 m_\Phi}{M_P^2}\ll \frac{m_\Phi^3}{M_P^2}$$

3. Decays to matter fermions, gauginos and Higgsinos

$$\Gamma_{\Phi \to ff} \sim \frac{m_f^2 m_\Phi}{M_P^2} \ll \frac{m_\Phi^3}{M_P^2}$$

4. Decays to hidden sector particles

Only unsuppressed decays to light gauge bosons on the large cycle and Higgses in sequestered hidden sectors

Summary of leading decay channels

Leading decay channels for the volume mode:

- Model-independent decays:
 - 1. Visible sector Higgses
- Model-dependent decays:
 - 1. Volume axion: extra dark radiation
 - 2. Local closed string axions: extra dark radiation
 - 3. Light gauge bosons on the large cycle: extra dark radiation or dark matter if Higgsed
 - 4. Higgses in sequestered hidden sectors: extra dark matter

 \Rightarrow constraints on hidden sector model building from dark radiation and dark matter overproduction

Predictions for dark radiation

Neutrinos thermalise whereas axions do not

$$\Rightarrow \quad \Delta N_{eff} = \frac{43}{7} \frac{\rho_{hidden}}{\rho_{SM}} = \frac{43 \,\kappa}{7} \left(\frac{g(T_{dec})}{g(T_{rh})}\right)^{1/3} \simeq 3.48 \,\kappa \quad \text{for} \quad T_{rh} \sim \mathcal{O}(1) \,\text{GeV}$$

where $\kappa = \frac{(1+9n_a/16)}{n_H Z^2}$ for n_H Higgs doublets and n_a local closed string axions

If $n_a \sim \mathcal{O}(100)$ (axiverse) ΔN_{eff} is too big! $\Rightarrow n_a = 0$ (QCD axion is an open string)

No $\Delta N_{\rm eff}$ and non-thermal dark matter

In globally consistent chiral brane models in explicit compact CY constructions, a_b is generically eaten up due to consistency reasons [MC,Mayrhofer,Valandro in preparation]

- \Rightarrow no dark radiation overproduction!
- \Rightarrow Two scenarios for non-thermal dark matter [Allahverdi,MC,Dutta,Sinha in preparation]:
- 1. QCD axion is a closed string mode a_s with $f_a \sim 10^{14}$ GeV:
 - $\Phi \to a_s a_s \text{ is a leading decay channel}$ $\Rightarrow Z \neq 0 \text{ to suppress } \Delta N_{\text{eff}}$
 - $T_{\rm rh} \sim 1 \, {\rm GeV} > \Lambda_{\rm QCD} \sim 200 \, {\rm MeV}$
 - \Rightarrow No axion dilution \Rightarrow tune initial misalignment
 - I decay dilutes thermal DM since $T_{\rm rh} \sim 1 \, {
 m GeV} < T_f \sim m_{\rm DM}/15 \sim 10 \, {
 m GeV}$
 - Non-thermal DM as decay products: too much DM
 - \Rightarrow 'Annihilation scenario' \Rightarrow Wino- or Higgsino-like DM (+ axions)

No $\Delta N_{\rm eff}$ and non-thermal dark matter

- 2. QCD axion is an open string mode θ with intermediate f_a :
 - $\Phi
 ightarrow heta heta$ is a subleading decay channel \Rightarrow No $\Delta N_{
 m eff}$
 - \Rightarrow Two scenarios:
 - 'Annihilation scenario' if $Z \neq 0$
 - $\Rightarrow T_{\rm rh} \sim 1 \, {\rm GeV} \Rightarrow$ Wino- or Higgsino DM (+ axions)
 - Branching scenario' if Z = 0:
 - Leading decay channel is to gauge bosons (loop-suppressed)
 - \checkmark Lower reheat temperature $T_{\rm rh} \sim \frac{\alpha_{\rm vs}}{4\pi} m_{\Phi} \sqrt{m_{\Phi}/M_P} \sim 10 \,{\rm MeV} > T_{\rm BBN}$
 - Axions and thermal DM are diluted \Rightarrow they are not DM
 - Non-thermal DM as decay products: too less DM if annihilation is too strong DM produced directly from the decay without any subsequent annihilation Bino-like DM

NB: Also any previous matter-antimatter asymmetry gets diluted!

- Welcomed effect for Affleck-Dine baryogenesis which can be too efficient
- If no asymmetry is left over after the decay of *τ_b* ⇒ co-genesis of DM and baryogenesis from the moduli decay in the presence of new O(TeV) coulored particles with *B* and *CP*-violating couplings [Allahverdi,Dutta,Sinha]
 ⇒ Can address baryon-DM coincidence!

Conclusions

- Hard to build explicit string models with a successful QCD axion plus light ALPs
- LVS good framework for brane model building and moduli stabilisation
- General LVS strategy to fix the moduli might give an axiverse
- Axions in the geometric regime:
 - Chiral model with a local QCD axion with intermediate f_a + 1 non-local light ALP
 - n+2 intersecting divisors + 1 D-term \Rightarrow QCD axion plus n ALPs with intermediate f_a
 - BUT need to solve the CMP!
- Axions for branes at singularities:
 - Solution Closed string QCD axion with $f_a \sim 10^{14}$ GeV for sing. more complicated than dP
 - QCD axion can be the phase of an open string mode with intermediate f_a
 - Reheating driven by decays of the volume mode (axion cold DM can be diluted)
 - **Dark radiation from light axions (but** a_b generically eaten by an anomalous U(1)s)
 - Sounds on $\Delta N_{\rm eff}$ strongly constrain model building and the axiverse
 - Cosmic axion background
 - Non-thermal DM from moduli decays: 'annihilation' or 'branching' scenario