ADMX enters its second generation

David B. Tanner

(presented by Pierre Sikivie)

University of Florida

for the ADMX collaboration*

*Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, NSF Grant PHY-1067242, and the Livermore LDRD program

Outline

- Review of ADMX past and present
- Gen 2: dil fridge and higher order modes
- Dil Fridge ITN
- Beyond gen 2

ADMX collaboration (at least a good portion of us)

The axion

- Peccei-Quinn mechanism for strong CP problem -> a
- Decays by two-photon emission $a \rightarrow \gamma \gamma$ (but $\tau > \tau_{\text{universe}}$)
- Light axions very weakly coupled: $g_{a\gamma\gamma} \sim m_a$
- Mass limits: $10^{-6} < m_a < 10^{-(2-3)}$ eV (overclosure) (SN1987a)
- Galactic halos may consist of axions
- At the Earth, $\rho_{halo} = 0.45 \text{ geV/cm}^3 \sim 72 \text{ }\mu\text{J/m}^3$ ~10¹⁴ axions/cm³
- Recent ideas (Bose condensation, caustics) make the case for axions even stronger

Cavity axion detector (Sikivie, 1983)

The signals are very weak

Power from the cavity is

$$P = 2.3 \cdot 10^{-26} \text{Watt} \left(\frac{V}{200\ell}\right) \left(\frac{B_0}{8 \text{Tesla}}\right)^2 C_{nl} \left(\frac{g_{\gamma}}{0.97}\right)^2.$$

$$\left(\frac{\rho_{\text{a}}}{0.5 \cdot 10^{24} \text{g/cm}^3}\right) \left(\frac{m_{\text{a}}}{2\pi \text{GHz}}\right) \min(Q_{\text{L}}, Q_{\text{a}})$$

- $Q_L \sim 70000 \text{ (GHz/}f)^{2/3} \text{ (ASE) and } Q_a \sim 10^6$
- $g_V \sim 0.97 \text{ (KSVZ)}$
- $g_V \sim 0.36 \text{ (DFSZ)}$

The Axion Dark Matter eXperiment (ADMX)

Stage	Phase 0	Phase I	Phase II		
Technology	HEMT; Pumped LHe	Replace w. SQUID	Add Dilution Fridge		
T_{phys}	2 K	2 K	100 mK		
T_N	2 K	1 K	100 mK		
$T_{sys} = T_{phys} + T_N$	4 K	3 K	200 mK		
Scan Rate ∝ (T _{sys}) ⁻²	1 @ KSVZ	1.75 @ KSVZ	5 @ DFSZ		
Sensitivity Reach $g^2 \propto T_{\rm sys}$	KSVZ	0.75 x KSVZ	AND! DFSZ		

Quantum-limited SQUID-based amplification

- SQUIDs have been measured with $T_N \sim 50 \text{ mK}$
- Compared to ~ 2 K for HFET amplifiers
- Near quantum
 – limited noise
- Provides an enormous increase in ADMX sensitivity

Example of injected signal into SQUID amplifier

Phase I operations: Science data

PRL 104, 041301 (2010)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2010

SQUID-Based Microwave Cavity Search for Dark-Matter Axions

S. J. Asztalos,* G. Carosi, C. Hagmann, D. Kinion, and K. van Bibber Lawrence Livermore National Laboratory, Livermore, California 94550, USA

> M. Hotz, L. J Rosenberg, and G. Rybka University of Washington, Seattle, Washington 98195, USA

J. Hoskins, J. Hwang, P. Sikivie, and D. B. Tanner University of Florida, Gainesville, Florida 32611, USA

R. Bradley

National Radio Astronomy Observatory, Charlottesville, Virginia 22903, USA

J. Clarke

University of California and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 27 October 2009; published 28 January 2010)

PRL 105, 051801 (2010)

PHYSICAL REVIEW LETTERS

week ending 30 JULY 2010

Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment

G. Rybka, M. Hotz, and L. J Rosenberg University of Washington, Seattle, Washington 98195, USA

S. J. Asztalos,* G. Carosi, C. Hagmann, D. Kinion, and K. van Bibber Lawrence Livermore National Laboratory, Livermore, California 94550, USA

> J. Hoskins, C. Martin, P. Sikivie, and D. B. Tanner University of Florida, Gainesville, Florida 32611, USA

R. Bradley

National Radio Astronomy Observatory, Charlottesville, Virginia 22903, USA

University of California and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 26 April 2010; revised manuscript received 28 June 2010; published 26 July 2010)

PRL 105, 171801 (2010)

PHYSICAL REVIEW LETTERS

week ending 22 OCTOBER 2010

Search for Hidden Sector Photons with the ADMX Detector

A. Wagner, G. Rybka, M. Hotz, and L. J Rosenberg University of Washington, Seattle, Washington 98195, USA

S. J. Asztalos,* G. Carosi, C. Hagmann, D. Kinion, and K. van Bibber Lawrence Livermore National Laboratory, Livermore, California 94550, USA

> J. Hoskins, C. Martin, P. Sikivie, and D. B. Tanner University of Florida, Gainesville, Florida 32611, USA

National Radio Astronomy Observatory, Charlottesville, Virginia 22903, USA

J. Clarke

ADMX was moved to the University of Washington

Summer 2010.

Magnet has been cooled and energized.

To exploit SQUID amplifiers: Cool to low temperatures

- At least to 100 mK
- Must reduce cavity physical temperature to below 100 mK also.

Josephson junctions

Gen 2 ADMX: Coverage of ~2.5-10 μeV (0.4-2.1 GHz)

Will scan the lower-mass decade at or below DFSZ sensitivity

ADMX Phase II construction well underway!

New modular gear systems (19600:1 reduction)

Newly plated microwave cavity

Typical dilution refrigerator "cold stage"

- Base temperature: < 20 mK
- Cooling power at 50 mK: 700 μW
- Dimensions: 5.625" diam, 14.3" long
- Thermometers: 3x
- Heaters: 2x
- Wiring: to micro-d connector

Invitation to Negotiate issued June 14

- June 14: issued
- June 28: inquiries due
- July 8: responses circulated
- July 26: 3 pm proposals opened
- Aug 13: UF selects vendor; negotiations begin
- Aug 28: 72 hour posting period ends

PURCHASING SERVICES

Invitation to Negotiate for

Dilution Refrigerator

Please mark all proposal submission envelopes with the following information:

ITN14NH102 – Dilution Refrigerator Opening July/26/2013

Space for dilution refrigerator, right above cavity

Preliminary design of dil fridge placement

ADMX Phase II: Instrument the TM₀₁₀ & TM₀₂₀ modes

TM₀₂₀ Mode Relative Frequency 2.3

Tuning Range 920-2,100 MHz

Relative Power 0.41

TM₀₁₀ Mode Relative Frequency 1.0

> Tuning Range 400-900 MHz

Why TM₀₂₀?

The TM_{010} and TM_{020} modes tune together: data from both modes are taken in parallel.

The TM₀₂₀ mode has acceptable "form factor."

Complementary frequency coverage.

For open cylinder

mode	Relative frequency	Tuning range (MHz)	relative power
$ \uparrow TM_{010} \\ TM_{020} $	1	400-900	1
	2.3	920-2,100	0.41

Beyond Generation 2

- Improved magnet
 - P~ B2V
 - V is easier than B
 - Increase V and mass range that is easy to scan moves to lower mass
 - Increase B and one can have DFSZ sensitivity at higher frequencies and smaller V
- Complex cavity structures
 - Multiple cavities in parallel
 - Periodic arrays of posts/vanes

Solenoids Present & Future (Mark Bird, MagLab)

CICC = Cable-In-Conduit Conductor. SRC = Stab ilized Rutherford-Cable, Mono = Monolithic Conductor Pers = persistent. Ti = NbTi, Sn = Nb₃Sn HTS = High temperature superconductor

B_0^2V (T^2m^3)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12000	ITER CS	Fusion/Sn CICC	Cadarache	13	2.6	13	6400	>500
5300	CMS	Detector/Ti SRC	CERN	3.8	6	13	2660	>458 ¹
650	Tore Supra	Fusion/Ti Mono Ventilated	Cadarache	9	1.8	3	600	
500	20 T, 1m	Axion/HTS CIC	?	20	1	2	>600	
430	Iseult	MRI/Ti SRC	CEA	11.75	1	4	338	
320	ITER CSMC	Fusion/Sn CICC	JAEA	13	1.1	2	640	> 50 ²
290	60 T out	HF/HTS CICC	MagLab	42	0.4	1.5	1100	
250	Magnex	MRI/Mono Pers	Minnesota	10.5	0.88	3	286	7.8
190	Magnex	MRI/Mono Pers	Juelich	9.4	0.9	3	190	
70	45 T out	HF/Sn CICC	MagLab	14	0.7	1	100	14
12	ADMX	Axion/Ti mono/SRC	U Wash	7	0.5	1.1	14	0.4
5	900 mod	NMR/Sn mono	MagLab	21.1	0.11	0.6	40	15

Magnet landscape

- There are 3 interesting plateaux:
- o 42 T and 0.42 m (HTS, hypothetical): 24x ADMX Gen 2
- 14 T and 0.7 m (maglab, exists): 5.8x ADMX Gen 2
- o 21 T and 0.11 m (maglab exists): 0.42x ADMX Gen 2
 - *But:* 4.5x higher frequency band, probably worth a factor of 2 in cavity contribution to sensitivity, because SQUID amplifiers have such good noise performance.

Cavity Design Study

Objective

- Frequency tuning range 2 – 3x simple cavity
- Maximize sensitivity $(\propto C^2Q)$

Designs

- photonic band-gap &
- multi-vane designs
- Evaluated superconducting hybrids
- -- Put thin superconducting film on walls; parallel field does not induce vortices.

Cavity Design Study

Compared with simple cylinder: frequencies 3x higher. Tuning range $\sim 1.3x$. C^2Q better than small cylinder at same frequency.

ADMX

Conclusions

- ADMX Generation 2 aims to have DFSZ sensitivity over 2-10 μeV (0.4 to 2.1 Ghz)
- Insert coming together. We will have an engineering/science run in late 2013 using a ³He refrigerator
 - Will allow commissioning of new insert
 - Will give good data on heat loads in operational conditions
- Dilution refrigerator delivery date requirement: January 2014
 - Acceptance testing inspring; installation/commissioning summer
- 2015 goal is to be operational at 50–100 mK
- It is not too soon to start design/optimization of what comes next

