

Status of Higgs measurements at the LHC

Tomáš Davídek, Charles University in Prague, on behalf of the ATLAS and CMS Collaborations

Outline

- Introduction
 - LHC; ATLAS and CMS experiments
- Overview of SM Higgs searches
 - production & decay modes
 - new boson X(125) observation in 2012
- Prerequisities
- Measurements of the properties of the new boson X(125)
 - mass
 - couplings
 - spin
- BSM searches for new Higgs fields
- Conclusions

Tomáš Davídek

Large Hadron Collider

- Two general-purpose experiments (ATLAS, CMS)
- Excellent performance of the accelerator.
 Many thanks to LHC operation team !!
- Parameters achieved in pp collisions:
 - centre-of-mass energy 7 TeV (2011) and 8 TeV (2012)
 - delivered luminosity 5 fb⁻¹ (2011) and 21 fb⁻¹ (2012)

• bunch spacing 50 ns

Tomáš Davídek

ATLAS experiment

Tile Calorimeter

Muon Detectors

Muon spectrometer:

air-core toroid magnets:
0.5 T in barrel, 1 T in endcap
momentum resolution:
2% @ 50 GeV, 10% @ 1 TeV

(combined Tracker+Muon spectrometer)

Hadronic calorimeter (HCAL)

- Fe+scint in barrel, Cu+Liquid Argon (LAr) in endcap
- resolution σ(E)/E ≈ 50%/√E + 3% (ECAL+HCAL, barrel part)

Tracker:

Electromagnetic calorimeter (ECAL):

- Pb+LAr technology, accordion geometry
- resolution $\sigma(E)/E \approx 10\%/JE + 0.7\%$

Further details in Ref:

- Si pixels, Si strips, Transition Radiation Tracker (TRT) inside 2 T solenoid
- resolution: $\sigma(p_{T}^{-1}) \approx 0.36 + 13/(p_{T} \cdot \sqrt{\sin \theta})$ [TeV⁻¹], (θ being the polar angle wrt beam axis) Tomáš Davídek 9th PATRAS Workshop, Germany, 24-28.6.2013

4/31

Liquid Argon Calorimeter

CMS experiment

ECAL:

- \bullet PbWO_4 crystals read by APD and VPT
- testbeam resolution $\sigma(E)/E \approx 2.8\%/JE + 0.3\% + 0.12/E$

S. Chatrchyan et al., JINST 3 (2008) S08004

Details in Ref:

Tomáš Davídek

Higgs boson

- Concept of the electroweak symmetry breaking in Standard Model via Higgs mechanism:
 - Introduce a doublet of complex scalar fields
 - Interaction terms gauge bosons-Higgs are turned into W, Z mass terms keeping photon massless.
 - Fermion masses are generated through Yukawa coupling terms also in dynamic way.
- Possible extensions beyond SM
 - 2 Higgs doublets model three neutral and two charged Higgs bosons

Tomáš Davídek

Standard Model Higgs boson production

- The main production modes are
 - gluon-gluon fusion (ggF)
 - vector boson fusion (VBF)
 - associated production (VH, ttH)
- Although the Higgs production is dominated by ggF, other production modes exhibit specific signatures used for triggering and kinematic configurations exploited in analyses.

associated production modes:

Standard Model Higgs boson decay modes

- Branching ratios are highly Higgs mass dependent
- Exploited in analyses:
 - $H \rightarrow \gamma + \gamma$
 - $H \rightarrow Z + Z \rightarrow 4I$
 - $H \rightarrow W+W \rightarrow 2I + 2v$
 - $H \rightarrow T+T$
 - H → b+b in associated production modes (WH, ZH, ttH)
- Other channels are being explored too (e.g. H→WW→lvqq, H→ZZ→llvv, H→ZZ→llqq, H→Zγ, H→µµ, BSM modes,)

Tomáš Davídek

New boson

• New boson discovery reported in July 2012 by both experiments. Since then, more data have been collected and analyzed:

- No doubt about existence of a new particle, however there are still open questions:
 - is it the SM Higgs boson?
 - are there other Higgs(-like) bosons?
- Now entering new era: precision measurements of the particle properties and searches for other Higgs-like resonances

Tomáš Davídek

Prerequisities (1)

- Pile-up:
 - pp interactions both in the same & neighbouring bunch-crossings affect the measurement.
 - Main impact on jet, tau and missing ${\rm E}_{\rm T}$ reconstruction.
 - Trigger and analysis tools robust wrt pile-up conditions. Examples of stabilities wrt pile-up:

Prerequisities (2)

- The precision SM measurements are very important:
 - demonstrate the understanding of the detector
 - SM processes represent background to new discoveries

11/31

Higgs mass measurement

- Performed in two channels where full kinematical reconstruction is possible
 - $H \rightarrow Z + Z \rightarrow 4I$
 - $H \rightarrow \gamma + \gamma$

$H \rightarrow Z + Z \rightarrow 4I (1)$

- Search for four isolated leptons (e, μ) coming from reconstructed primary vertex
- One pair of opposite-charge same-flavour leptons corresponds to m₇
- Calibration performed with "standard candles"
 - $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$

$H \rightarrow Z + Z \rightarrow 4I$ (2)

14/31

$H \rightarrow Z + Z \rightarrow 4I$ (2)

CMS:

• m₁ = 125.8±0.5(stat)±0.2(syst) GeV

• signal strength μ = 0.91^{+0.30}

$H \rightarrow \gamma + \gamma$ (1)

- Search for isolated high- p_{τ} photons
- Reduce impact of pile-up and improve mass resolution by requiring photons pointing to reconstructed primary vertex
- Several categories based on event properties
 - different S/B ratio and mass resolution
 - different share of the production modes
- Critical items:
 - EM scale calibration, performed with $J/\psi \rightarrow e^+e^-$ and $Z \rightarrow e^+e^-$, extrapolation for photons via MC vs. testbeam data comparison
 - amount of material upstream of the EM calorimeter

ATLAS categories

$H \rightarrow \gamma + \gamma$ (2)

CMS

ATLAS

- m_H = 126.8±0.2(stat)±0.7(syst) GeV
- signal strength μ = 1.65±0.24±0.22

- m_H = 125.4±0.5(stat)±0.6(syst) GeV
- signal strength μ = 0.78±0.27

• MVA (primary) and cut-based (cross-check) analysis

Tomáš Davídek

Higgs mass combination

• ATLAS combination

- combined mass
 m_µ = 125.5±0.2(stat)±0.6(syst) GeV
- mass difference (H → γ+γ vs. H→ Z+Z) compatibility 1.5% (2.4σ), increases to 8% with more conservative systematics treatment

CMS combination

combined mass

m_H = 125.7±0.3(stat)±0.3(syst) GeV,

quite good match between both decay modes

Tomáš Davídek

$H \rightarrow W+W \rightarrow 2I+2v$ (1)

- Channel with very high $\sigma \cdot BR$, nevertheless full reconstruction not possible, use transverse mass m_{τ} or lepton invariant mass m_{μ} instead
- require two high- p_{T} leptons, missing E_{T} , topological cuts
- different categories (jet multiplicity 0,1,2; lepton flavours) ATLAS
 CMS

$H \rightarrow W+W \rightarrow 2I+2v$ (2)

• ATLAS

• final discrimination from transverse mass m_{τ} shape

- signal strength μ = 1.01±0.31
- observed significance 3.8σ, expected 3.7σ

• CMS

 excess at low mass compatible with the expected Higgs signal

- signal strength µ = 0.76±0.21
- observed significance 3.9σ, expected 5.3σ

Tomáš Davídek

$H \rightarrow \tau + \tau (1)$

- Search for isolated leptons, T_{had} , and missing E_{T} . Final states include • $T_{lep}T_{lep}, T_{lep}T_{had}$ and $T_{had}T_{had}$ combinations with different #jet categories
- Main irreducible background from $Z \rightarrow \tau + \tau$ •
- Final discriminant m₁ obtained with missing mass constraint •
- ATLAS: not full statistics yet
 - highest sensitivities for VBF and boosted ggF

 CMS: already with full statistics 2011+2012

- Backgrour

m_{ττ} [GeV]

300

21/31

H → T+T (2)

• ATLAS

 observed deviation from background-only hypothesis for m_H=125 GeV corresponds to local significance of 1.1σ, expected 1.7σ

• CMS

- broad event excess at low mass compatible with expected Higgs signal
- signal strength μ = 1.1±0.4 (m_µ=125 GeV)
- observed significance 2.8σ, expected
 2.6σ (m_μ=125 GeV)

Tomáš Davídek

$H \rightarrow b+bbar$

- Important channel: decay to fermions (Yukawa coupling), highest BR for m_µ < 135 GeV
- Large background and complex final states make the signal extraction very difficult
- The best sensitivity so far in associated production (WH, ZH), see CMS result
- Summary (analyses in blue not yet with full statistics)

	ATLAS		CMS	
Production mode	significance, signal strength	95% CL limit on σ/σ _{sm} obs. (exp)	significance, signal strength	95% CL limit on σ/σ _{sm} obs. (exp)
WH, ZH	-	1.8 (1.9)	2.1σ (2.1σ) μ = 1.0±0.5	-
VBF	-	-	$\mu = 0.7 \pm 1.4$	3.6 (3.0)
ttH	-	13.1 (10.5)		5.8 (5.2)

Tomáš Davídek

Summary on Higgs searches

• Signal strength relative to that expected from SM:

• Signal sensitivity:

	Significance observed (expected)		
Decay Mode	ATLAS (m _H =125.5 GeV)	CMS (m _H =125.7 GeV)	
$H \rightarrow \gamma + \gamma$	7.4σ (4.1σ)	3.2σ (3.9σ)	
$H \rightarrow ZZ \rightarrow 4I$	6.6σ (4.4σ)	6.7σ (7.1σ)	
$H \rightarrow WW$	3.8σ (3.7σ)	3.9σ (5.3σ)	
H → t+t	1.1σ (1.7σ)	2.8σ (2.6σ)	
H → b+bbar	-	2.0σ (2.2σ)	

Ε.

11

Tomáš Davídek

CMS

 $(M_H = 125.7 \text{ GeV})$

 1.15 ± 0.62

 1.10 ± 0.41

 0.77 ± 0.27

 0.68 ± 0.20

 0.92 ± 0.28

 0.80 ± 0.14

ATLAS

 $(M_H = 125.5 \text{ GeV})$

 0.8 ± 0.7

 1.6 ± 0.3

 1.0 ± 0.3

 1.5 ± 0.4

 1.30 ± 0.20

 -0.4 ± 1.0

Couplings (1)

- Event yield in the given channel assumed $[\sigma \cdot BR](ii \rightarrow H \rightarrow ff) = \sigma_{ii} \Gamma_{ff} / \Gamma_{tot}$. Define scale factors κ : $\sigma_{ii} = \kappa_i^2 \sigma_{ii}^{SM}$, $\Gamma_{ff} = \kappa_i^2 \Gamma_{ff}^{SM}$
- Tests performed:
 - evidence for VBF process
 - 3.1σ in ATLAS
 - custodial symmetry ($\Lambda_{WZ} = \kappa_W / \kappa_Z$)
 - $\Lambda_{wz} = 0.80 \pm 0.15$ (ATLAS), Λ_{wz} in [0.73,1.00] at 68% CL (CMS)
 - probing for BSM contributions (new undetected particles in final state and/or in loops)
 - BR < 0.6 at 95% CL (ATLAS), BR < 0.52 at 95% CL (CMS)

Couplings (2)

• fermion vs vector boson couplings (assuming $\kappa_{y} = \kappa_{z} = \kappa_{w}$, $\kappa_{F} = \kappa_{h} = \kappa_{r}$)

ATLAS

CMS

 $^{\rm A}_{\rm P}$

Spin and parity measurement (1)

- The decay $H \rightarrow \gamma + \gamma$ excludes spin 1 (Landau-Yang theorem). For spin 2 hypothesis, minimal graviton-inspired model was considered.
- Various J^P hypotheses tested in the following channels:
 - $H \rightarrow \gamma + \gamma$: use of production angle Θ^* in the Collins-Soper frame
 - $H \rightarrow Z + Z \rightarrow 4I$: use of $m_{12}^{}$, $m_{34}^{}$ and five production & decay angles

• $H \rightarrow W+W \rightarrow 2I+2v$: direct reconstruction not possible, use several kinematic distribution (e.g. $m_{\parallel}, p_{\tau}^{\parallel}, \Delta \phi_{\parallel}, m_{\tau}$)

Tomáš Davídek

Spin and parity measurement (2)

60

- ATLAS
 - H→WW→evµv: J^P=0⁺ favoured
 - $H \rightarrow ZZ \rightarrow 4I$: excludes $J^{P}=0^{-}, 1^{+}, 1^{-} a^{+} > 95\%$ >95% and 94% CL respectively
 - combining all three channels: $J^{P}=2^{+}$ is excluded at 99.9% CL over the full range of f_{aa} (fraction of spin-2 production mechanism via q+qbar)

Spin and parity measurement (3)

• CMS:

 tests in H→ZZ→4l channel disfavour J^P=0⁻ wrt J^P=0⁺ with 99.84% CL

 combination of H→WW→2l2v and H→ZZ→4l channels disfavours J^P=2⁺_m with 99.4% CL

(gluon-gluon fusion only)

Beyond SM searches

Searches for other Higgs boson(s) in BSM scenarii include 2HDM, MSSM, additional singlet... Examples of searches:

ATLAS

heavier $H \rightarrow WW \rightarrow ev\mu v$, h assumed at 125 GeV (2HDM)

CMS

heavy (m₁ > 600 GeV) H→WW→lvjj (require lepton, missing E_{τ} , "fat" jet), singlet model mixing to X(125)

Ultimately the VV scattering will tell us if the object at 125 GeV is • capable alone to restore the unitarity. 9th PATRAS Workshop, Germany, 24-28.6.2013

Tomáš Davídek

30/31

Conclusions

- Existence of the new particle with mass of 125 GeV well established.
- Observed decay modes and other properties suggest a Higgs boson, however still a lot of work ahead:
 - Need to improve the signal strength measurements (current results by ATLAS and CMS a bit different, however still compatible within errors)
 - Spin and parity strongly favour $J^P=0^+$
 - Couplings to individual particles still with large uncertainties, but evidence for non-zero fermion coupling
 - No clear discrepancy wrt SM predictions observed so far
 - Aim to measure the Higgs self-coupling at next LHC runs
- Analyses of 2012 data still ongoing, also looking forward for new data in 2015.

Tomáš Davídek

Backup slides

Tomáš Davídek

References

- For more detailed information, please visit the ATLAS and CMS public physics results, especially:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
- Most of the presented results come from the following sources:
 ATLAS
 CMS
 - ATLAS-CONF-2013-012
 - ATLAS-CONF-2013-013
 - ATLAS-CONF-2013-014
 - ATLAS-CONF-2013-027
 - ATLAS-CONF-2013-030
 - ATLAS-CONF-2013-034
 - ATLAS-CONF-2013-040

- CMS-PAS-HIG-13-005
- CMS-PAS-HIG-13-004
- CMS-PAS-HIG-13-003
- CMS-PAS-HIG-13-002
- CMS-PAS-HIG-13-001
- CMS-PAS-HIG-13-012
- CMS-PAS-HIG-13-011