IAXO – the future axion helioscope

0 0

Biljana Lakić (Rudjer Bošković Institute, Zagreb) for the IAXO Collaboration

9th Patras Workshop on Axions, WIMPs and WISPs, 24-28 June 2013, Mainz, Germany

IAXO: International AXion Observatory

Outline:

- Axions and ALPs
- Experimental searches
- The IAXO project
 - Physics
 - > Magnet
 - > X- ray optics
 - Low background detectors
- Sensitivity prospects
- Status of the project

ournal of Cosmology and Astroparticle Physics

Towards a new generation axion helioscope

I.G. Irastorza,^{*a*} F.T. Avignone,^{*b*} S. Caspi,^{*c*} J.M. Carmona,^{*a*} T. Dafni,^{*a*} M. Davenport,^{*d*} A. Dudarev,^{*d*} G. Fanourakis,^{*e*} E. Ferrer-Ribas,^{*f*} J. Galán,^{*a*,*f*} J.A. García,^{*a*} T. Geralis,^{*e*} I. Giomataris,^{*f*} H. Gómez,^{*a*} D.H.H. Hoffmann,^{*g*} F.J. Iguaz,^{*f*} K. Jakovčić,^{*h*} M. Krčmar,^{*h*} B. Lakić,^{*h*} G. Luzón,^{*a*} M. Pivovaroff,^{*j*} T. Papaevangelou,^{*f*} G. Raffelt,^{*k*} J. Redondo,^{*k*} A. Rodríguez,^{*a*} S. Russenschuck,^{*d*} J. Ruz,^{*d*} I. Shilon,^{*d*,*i*} H. Ten Kate,^{*d*} A. Tomás,^{*a*} S. Troitsky,^{*l*} K. van Bibber,^{*m*} J.A. Villar,^{*a*} J. Vogel,^{*j*} L. Walckiers^{*d*} and K. Zioutas^{*n*}

IAXO project: JCAP 06 (2011) 013

IAXO magnet: I. Shilon et al, IEEE Trans. Appl. Supercond. 23

Axions and ALPs: Motivation

 Axions are the most elegant solution to the Strong CP problem: why QCD does not seem to break the CP symmetry

 pseudoscalar particles, neutral, practically stable

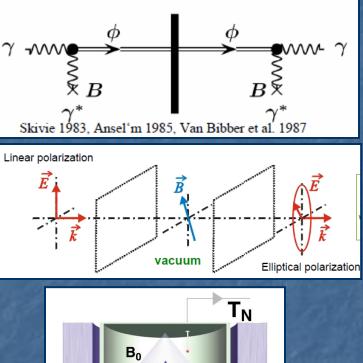
Axions are candidates for both cold and hot dark matter

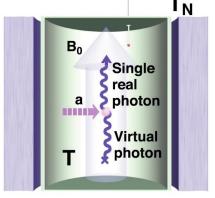
Axion-like particles (ALPs) are predicted by many extensions of the standard model

Relevant axion/ALPs parameter space at reach of current and near-future experiments

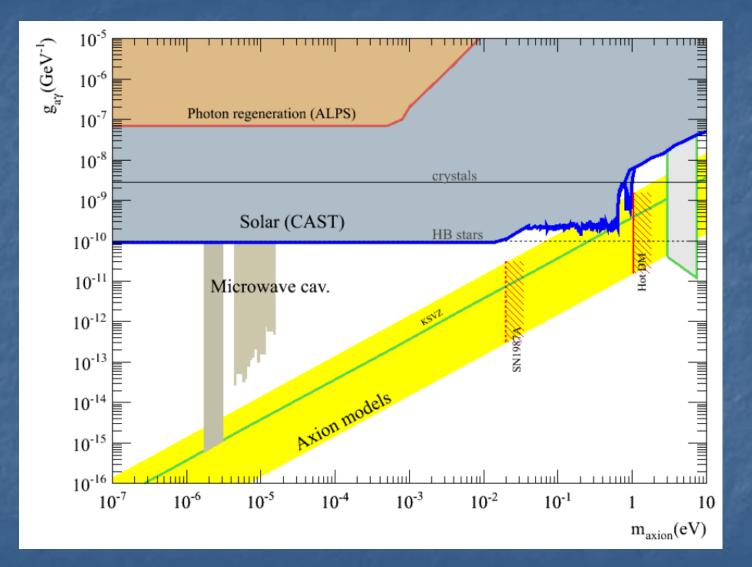
New theory scenarios: string theory predicts axions/ALPs with detectable parameters

> Astrophysical hints for axion/ALPs?

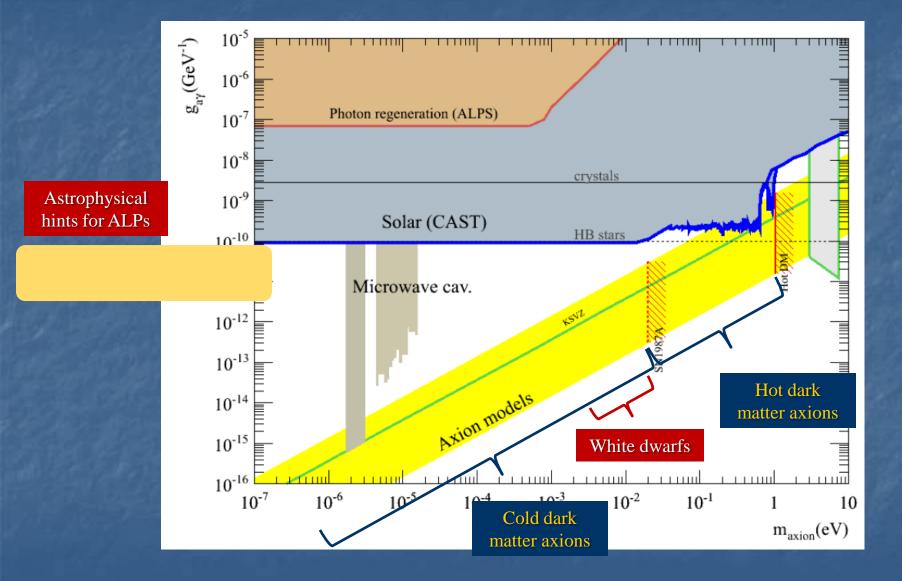

- o transparency of the Universe to UHE gammas
- \circ white dwarf cooling anomaly \rightarrow point to few meV axions


... and more ...

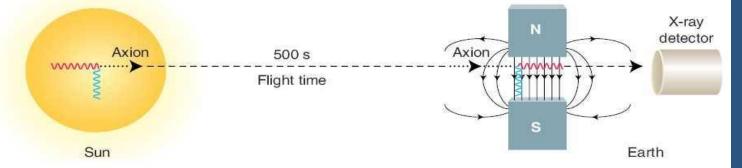
Experimental searches (a – y coupling)


Laser experiments:

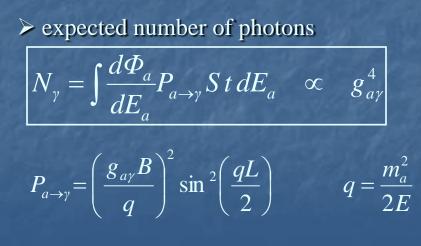
- Photon regeneration ("invisible light shining through wall")
- Polarization experiments (PVLAS)
- > Search for dark matter axions:
 - Microwave cavity experiments (ADMX)
- > Search for solar axions:
 - Crystal detectors
 - > Helioscopes (SUMICO, CAST)

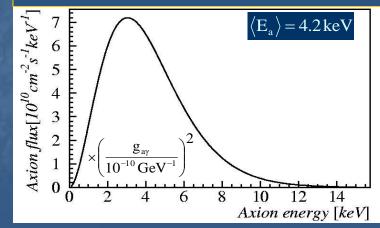

Axion/ALP parameter space

Patras2013, 24-28 June 2013, Mainz


Biljana Lakić

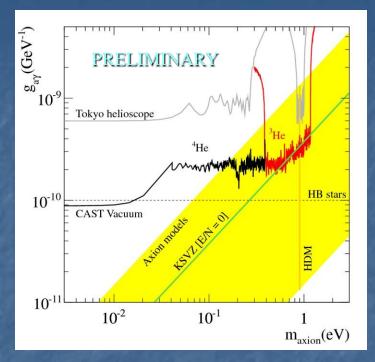
Axion/ALP parameter space


IAXO: Physics



Sun: a thermal photon converts into an axion via Primakoff process in the solar plasma

Earth: an axion converts into a photon in a strong transverse magnetic field

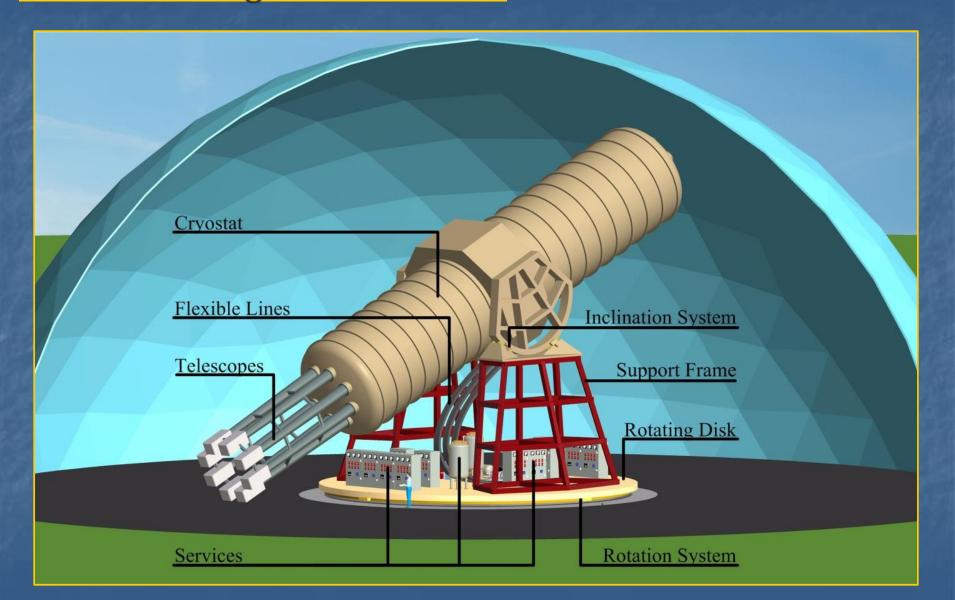


Biljana Lakić

IAXO: Physics

CAST (CERN Axion Solar Telescope) is currently the most sensitive axion helioscope

- > No signal over background observed so far
- > The best experimental limit on $g_{a\gamma}$ over a broad range of axion masses
- The collaboration gained a lot of experience in axion helioscope searches

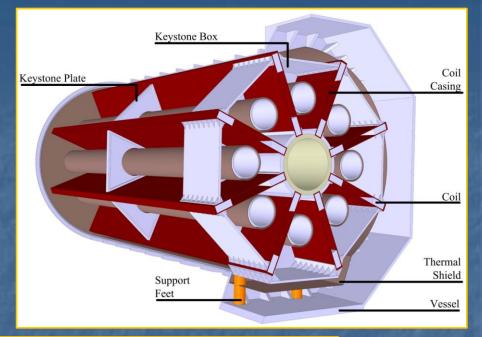


- IAXO (International AXion Observatory) is a new generation axion helioscope
- Goal: more than 4 orders of magnitude in signal-to-noise ratio with respect to CAST (more than 1 order of magnitude in sensitivity to g_{av})

> Challenges:

- New dedicated superconducting magnet
- Extensive use of X-ray optics
- o Low background detectors

IAXO: Design



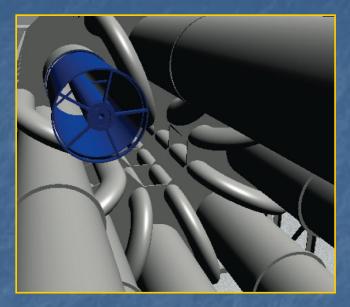
Biljana Lakić

IAXO: Magnet

Toroidal magnet:

- Much bigger aperture than CAST:
 - ~ 0.6 m \varnothing each bore (× 8 bores)
- Bores at room temperature
- Decoupled from the optical detection system
- Relies on known engineering solutions (developed for ATLAS)

	Property	Value	Unit
Cryostat dimensions:	Overall length	25	m
	Outer diameter	5.2	m
	Cryostat volume	~ 530	m ³
Toroid size:	Inner radius, Rin	1.05	m
	Outer radius, Rout	2.05	m
	Total axial length	21	m
Mass:	Conductor	65	tons
	Cold Mass	130	tons
	Cryostat	35	tons
	Total assembly	~ 250	tons

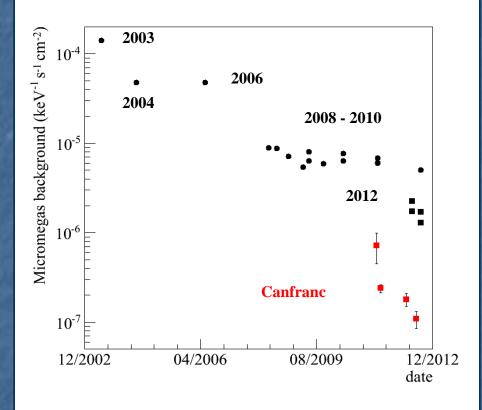

Biljana Lakić

IAXO: X-ray optics

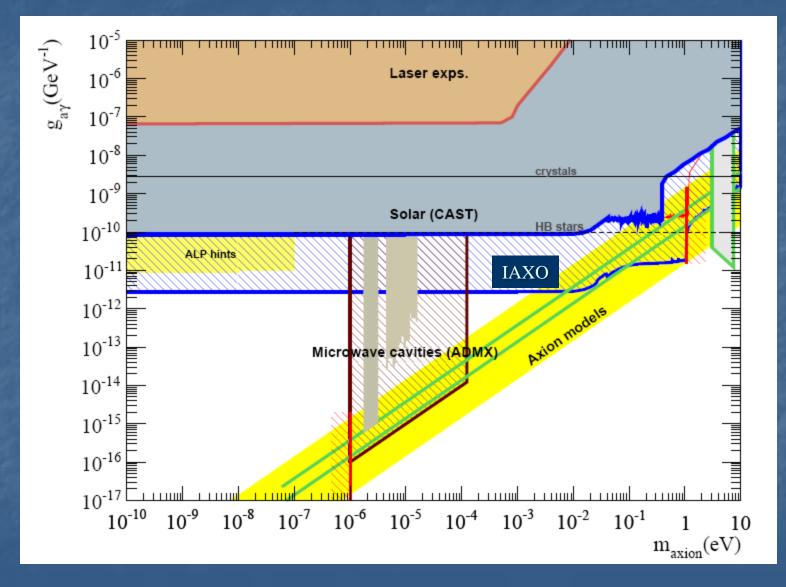
CAST X-ray optics: high technology, expensive, exquisite imaging properties (required in X-ray astronomy)

IAXO X-ray optics:

- Exquisite imaging not required
- Large area to be covered
- Pursued solution: thermally-formed glass substrates
 - Successfully used by NASA for NuSTAR telescope
 - Cost effective solution
- Some properties:
 - 8 telescopes, 5 m focal length
 - \circ Good throughput (0.3 0.5)
 - Small focal point (~ 1 cm²)

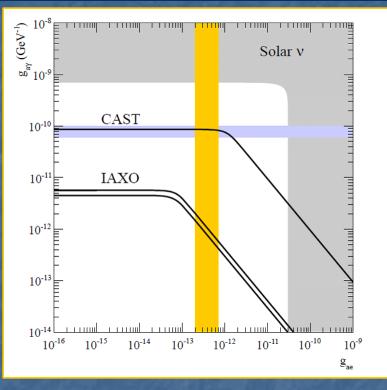

Biljana Lakić

IAXO: Detectors


Low background detectors for IAXO: Micromegas detectors (used in CAST) $\geq 20x$ background reduction during the

- 20× background reduction during the CAST operation:
 - High radio-purity materials
 - Shielding
 - New technique (Microbulk)
- Active program to further reduce background
 - Experimental tests with current detectors at CERN, Zaragoza, Saclay
 - Underground setup at Canfranc
 - Simulation works to build up a background model
- Goal: at least 10⁻⁷ c/keV/cm²/s (down to 10⁻⁸ c/keV/cm²/s if possible)

History of background evolution of Micromegas detectors in CAST


IAXO: Sensitivity prospects

Biljana Lakić

IAXO: Sensitivity prospects

IAXO basic program: axion(ALP) – photon coupling, axion(ALP) – electron coupling

Further physics cases:

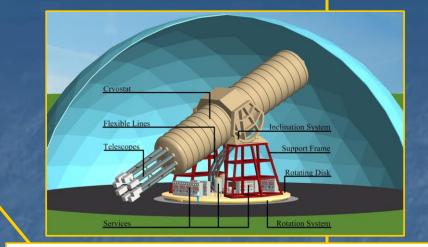
- search for WISPs: paraphotons, chameleons, ...
- ➤ relic axions: if equipped with microwave cavities, cold dark matter halo axions could be searched for → under study

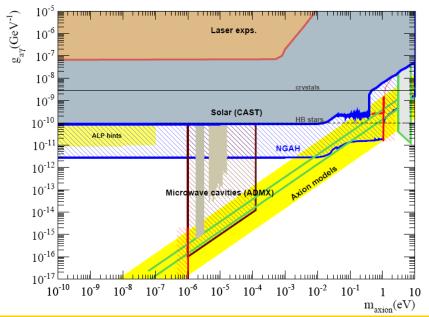
Biljana Lakić

IAXO: Status of the project

> IAXO collaboration:

- Most CAST groups
- New groups & extended expertises (magnet, optics)
- Open for new interested groups


CAST 2013 – 2014 plan includes tests of techniques and know-how for IAXO


- Small X-ray optics (~5 cm aperture) fabricated using thermally formed glass substrates
- Micromegas low background detector
- Conceptual Design Report in preparation

Letter of Intent is practically finished and will be submitted to CERN soon

Conclusions

- CAST is currently the most sensitive axion helioscope. The collaboration has gained a lot of experience in axion helioscope searches (magnet, optics, low background detectors).
- ➤ IAXO is a new generation axion helioscope aiming to improve CAST sensitivity to axion-photon coupling constant by 1 - 1.5 orders of magnitude.
- Potential for additional physics cases: axion-electron coupling, relic axions, WISPs
- Future helioscope experiments and Microwave cavity searches (ADMX) could cover a big part of QCD axion model region in the next decade.

Patras2013, 24-28 June 2013, Mainz

16

• •