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Outline

● How LSW experiments can be improved by resonant 
optical techniques?

● Why are there challenging requirements on the optical 
design in ALPS-II?

● How we can meet these requirements?

● What has been achieved so far on behalf of the 
optical design of ALPS-II?
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Light-Shining-Through-a-Wall (LSW)

● exploit coupling to EM fields for production and 
(indirect) detection of ALPs

● straight-forward approach, model independent

● ALP production in the lab is much weaker than from 
astronomical sources

● but: coherent light source offers many advantages

ALPS experiment conducted at DESY, 2009
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ALPS-II

g =
1
B L

√2 4√ h c⋅SNR
15P inc PBp λ

⋅
8√ ndarktm

resonant enhancement 
of regenerated signal

● build detector with 
very low dark rate

Detector
● tap full potential of 35 W laser
● increase wavelength
● increase production build-up

Production flux

● increase interaction length
● (stronger magnets)

Magnet and interaction regions

what else?

weakest detectable 
coupling within certain 
mass region:

todays talks by:
J.-E. von Seggern
J. Dreyling-Eschweiler
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Projected improvements in ALPS-II

Parameter Scaling ALPS-I ALPS-IIc Improvement

wavelength g ~ 1 / λ1/4 λ = 532 nm λ = 1064 nm 1.2

production power g ~ 1 / P1/4 P = 1 kW P = 150 kW 3.5

regen. signal gain g ~ 1 / PB1/4 PBr = 1 PBr = 40000 14

detector dark noise g ~ 1 / nd
1/8 nd = 2 mHz nd = 1 µHz 2.6

detector efficiency g ~ 1 / ε1/4 ε = 0.9 ε = 0.75 0.96

measurement time g ~ 1 / t1/8 t = 10 h t > 10 h 1

magnetic field g ~ 1 / (B L) BL = 22 Tm BL = 468 Tm 21

total for ALPs > 3000

total for HPs ~ 150
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The ALPS project stages

P(1064nm) = 30 W L = 10 m
PB

PC
 = 5000 PB

RC
 = 40000

P(1064nm) = 30 W
L = 100 m
Q

PC
 ~ 4 · 1012

Q
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 ~ 3 · 1013

P(532nm) ~ 4 W L ~ 4,5 m
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PC
 ~ 250
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Improvements on the production side
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Laser light source

● 35 W @ 1064 nm 
laser power

● single mode

● single frequency

● high intrinsic 
frequency stability

● frequency 
modulation with PZT

● enhanced
LIGO laser

Frede et al., Optics Express, Vol. 15, Issue 2, pp. 459-465 (2007)
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Circulating field in production cavity

Gaussian beam profile
● High intensities on the mirrors can

– destroy the dielectric coatings

– alter or distort Gaussian beam properties
● ~500 kW/cm² have been operated safely in 

Gravitational Wave Detection for years

● green light rather than infrared known to 
cause problems

PB of resonator with
600 kW/cm² green light field

● change from green to 
infrared 

● limit PBPC to 5000
→ 580 kW/cm² (ALPS-IIa)
→ 300 kW/cm² (ALPS-IIb/c)

T. Meier
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Aperture and optimum mode diameter 

Gaussian beam profile

Δ P
P

=−e−2 r2 /w2

optimum curvature radius
L = zr <=> w0² = L*λ/π

ALPS-IIc: Superconducting dipoles 
introduce aperture with diameter
2r = 40 mm for the cavity modes

magnets
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Aperture and optimum mode diameter 

Gaussian beam profile

Δ P
P

=−e−2 r2 /w2

ALPS-IIc: Superconducting dipoles 
introduce aperture with diameter
2r = 40 mm for the cavity modes

optimum curvature radius
L = zr <=> w0² = L*λ/π

assuming 8 ppm additional 
losses / mirror
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Improvements on the regeneration side
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LSW with resonantly enhanced regeneration

● cavities on production & regeneration side improve signal

● signal enhancement ~ power build-up (PB) of both cavities
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LSW with resonantly enhanced regeneration

both cavities must be resonant 
to laser frequency and share 
same optical axis 

detector looking for signal 
photons leaving RC

length & alignment control RC clear of spurious photons

discriminate between signal field and
auxiliary field used for locking the RC
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LSW with resonantly enhanced regeneration

both cavities must be resonant 
to laser frequency and share 
same optical axis 

detector looking for signal 
photons leaving RC

length & alignment control RC clear of spurious photons

use different wavelength for locking
e.g. SH frequency
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Optical layout
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Length control

● in order to achieve 95% of the resonance PB, 
mistuning has to be  <1/10 of the linewidth (FWHM)

● cavity length change
per FWHM

● PC (ALPS-IIb/c):

● RC (ALPS-IIb/c):

FWHM

0.95

Δ LFWHM = λ
2⋅F

Δ LFWHM , PC = 11 pm

Δ LFWHM ,RC = 1.5 pm

Δ L.95 ,PC < 1.1 pm

Δ L.95 ,RC < 0.15 pm
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Pound-Drever-Hall

E. Black, An introduction to Pound–Drever–Hall laser frequency stabilization

● Pound-Drever-Hall technique allows 
to sense small frequency offsets 
between the cavity resonance and the 
injected light

● useful sensor for cavity locking
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Length control – PC
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Length control – RC
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Alignment control

● displacement

● tilt

● ALPS-IIc requirement:

large beam diameter make cavity 
modes more susceptible to tilt

Δθ.95 < 10 microrad

w
0  = 1 mm

A
LP

S
-IIa: w

0  = 4 m
m

A
LP

S
-IIb

/c: w
0  =

 6.4 m
m
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Differential Wavefront Sensing

● Auto-alignment technique for optical modecleaners

● DWS uses sideband modulation

● differential phase is detected at independent Guoy 
positions along the reflected beam

● Piezo-electric mirrors can correct for misalignments

First Sensor QPD
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Auto-alignment - PC
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Auto-alignment - RC
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Central Board

for substrates on optical axis:

● ultra-low wedge

● tilt compensation

for central board:

● high surface planarity

● low thermal effects on planarity

ref. QPDs

CMM measurement of ALPLAN surface

axions don't refract
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Table-top experiment and results

● demonstrate stabilization techniques

● table-top setup at AEI Hannover

● central breadboard and two 1m-cavities with PB 100 

● dichroic stabilization of RC was achieved

● locked for >10 min, small dichroic phase diff.
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Dichroic Phase Shift

eff. penetration depth

● different penetration depth 
for IR and green mode

● measure and correct with 
frequency-shifting AOM
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Summary

● the improved optical design of ALPS-II will enhance 
the sensitivity in ALPs and HP searches

● the ALPS cavities have to be controlled with respect 
to frequency and spatial alignment

● a table-top experiment is performed, which has 
already partly demonstrated the cavity stabilization 
concept to work
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