WIMP Dark Matter

&

Halo-Independent Analysis of Direct Detection Data

Paolo Gondolo University of Utah

Thursday, June 27, 13

1

The Magnificent WIMP (Weakly Interacting Massive Particle)

 One naturally obtains the right cosmic density of WIMPs

Thermal production in hot primordial plasma.

 One can experimentally test the WIMP hypothesis
 The same physical processes that produce the right density of WIMPs make their detection possible

 At early times, WIMPs are produced in e⁺e⁻, μ⁺μ⁻, etc collisions in the hot primordial soup [thermal production].

$$e^+ + e^-, \mu^+ + \mu^-, \text{etc.} \leftrightarrow \chi + \chi$$

- WIMP production ceases when the production rate becomes smaller than the Hubble expansion rate [freeze-out].
- After freeze-out, there is a constant number of WIMPs in a volume expanding with the universe.

(WIMPless candidates are WIMPs!)

- In general, (σv) is a complicated function of the WIMP mass m and the WIMP velocity v, including resonances, thresholds, and coannihilations.
- At small v, $\langle \sigma v \rangle$ can be expanded as

$$\langle \sigma v \rangle = a + bv^2 + \cdots$$
 s-wave $\langle \sigma v \rangle = bv^2 + cv^4 + \cdots$ p-wave

(These expansions are not good near a resonance or threshold.)

$\langle \sigma v \rangle$ =const required for right cosmic density

Steigman, Dasgupta, Beacom 2012 Gondolo, Steigman (in prep.)

Fourth-generation Standard Model neutrino

Constraints on scattering cross section

Direct detection and LHC

Fox et al 2012

Constraints on annihilation cross section

γ -rays, cosmological ionization, positrons, and LHC

Kopp, Fox, Harnik, Tait 2011 & Bergstrom et al 2013

Evidence for WIMP dark matter?

WMAP/Planck haze

Positron excess

Adriani et al 2009; Ackerman et al 2011; Aguilar et al 2013

Aalseth et al 2011

130 GeV γ -ray line

Weniger 2012

Evidence for WIMP dark matter?

High energy cosmic ray positrons are more than expected

Adriani et al. [PAMELA], arXiv: 0810.4995

Borla Tridon et al [MAGIC], arXiv: 1110.4008

Cosmic ray positrons

Fermi-LAT confirms and extends the positron excess

Ackernmann et al, 1109.0521

Use the biggest magnet on Earth: the geomagnetic field!

AMS-02 provides data with exquisite precision

Aguilar et al (AMS-02) 2013

Galactic cosmic rays

 Primary cosmic rays (p,⁴He, C, N, O, ..., Fe, ⁶⁴Ni) are produced in supernova remnants.

> First observational evidence Ackermann et al 2013

- Secondary cosmic rays (²H, ³He, ^{6,7}Li, ^{7,9,10}Be, ^{10,11}B,, ²⁶AI, ³⁵CI, ⁵⁴Mn,) are produced in cosmic ray collisions with the interstellar medium (90% H, 10% He).
- Secondary to primary ratio carries information on astrophysical model.

Background graphics from Moskalenko 2005

Nomura-Thaler model:

Bergstrom, Edsjo, Zaharijas 2009

$$DM + DM \rightarrow s + a, s \rightarrow a + a, a \rightarrow \mu^+ \mu^-$$

 $m_s = 20 \text{ GeV} \qquad m_a = 0.5 \text{ GeV}$

Pulsars

Grasso et al [Fermi-LAT], arXiv: 0905.0636

Many parameters and models to choose from.

 $m_{\chi} \, [\text{GeV}]$

WMAP/Planck haze

Positron excess

Adriani et al 2009; Ackerman et al 2011

135 GeV gamma-ray line?

found by others

Ω

-2°€

-3

30

3.20 effect based on 50 photons $m = 129.8 \pm 2.4^{+7}_{-13} \text{ GeV}$ $\langle \sigma v \rangle_{\gamma\gamma} = (1.27 \pm 0.32^{+0.18}_{-0.28}) \times 10^{-27} \text{ cm}^3 \text{s}^-$ HESS-2 will tell (July 2013?)

Fermi Collab. upper bounds

Ackerman et al (Fermi-LAT) 2012

135 GeV gamma-ray line?

Bloom et al (Fermi-LAT) 2012

Albert et al (Fermi-LAT) 2012

Thursday, June 27, 13

135 GeV gamma-ray line: astrophysics Intensity depends on halo clumpiness

Dark matter clumps, clouds, subhalos, minihalos, microhalos, nanohalos,

$$\frac{d\Phi_{\gamma}}{dE} = \frac{\sigma v}{2m^2} \int \rho^2(\ell) \, \frac{dN_{\gamma}}{dE} \, d\ell$$

Boost factor

 $B = \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2}$

depends on position and on statistics (shape, mass) of subhalos

Not just for γ -rays: positrons, antiprotons, synchrotron, etc.

135 GeV gamma-ray line: astrophysics How small are cold dark matter halos?

From Kuhlen, Vogelsberger, Angulo 2012

135 GeV gamma-ray line: astrophysics

How small are cold dark matter halos?

135 GeV gamma-ray line: particle physics Gamma-line chaperones

Thursday, June 27, 13

135 GeV gamma-ray line: particle physics

Highly incomplete list of suggested particle models

Models		References	
S U S	MSSM neutralino	Acharya, Kane, Kumar, Lu, Zheng 1205.5789	
	beyond-MSSM neutralino	Das, Ellwanger, Mitropoulos 1206.2639	
ľ	sneutrino	Choi, Seto 1205.3276	
decaying dark matter		Kyee, Park 1205.4151; Buchmuller, Garny 1206.7056	
Extended Higgs sector		Cline 1205.2688; Lee, Park, Park 1205.4675; Buckley, Hooper 1205.6811	
Minimalist dark matter		Cheung, Tsai, Tseng, Yuan, Zee 1207.4930	
Extra U(I)'		Dudas, Mambrini, Pokorski, Romagnoni 1205.1520	
Kinetically-mixed U(1)'		Park, Park 1207.4981	
Dipole dark matter		Weiner,Yavin 1206.2910; Heo, Kim 1207.1341; Cline, Moore, Frey 1208.2685	
Non-SUSY GUT		Li, Maxin, Nanopoulos, Walker 1208.1999	
Leptonic dark matter		Baltz, Bergstrom 2002; Bergstrom 1208.6082	
••••		••••••	

135 GeV gamma-ray line: particle physics Leptonically-Interacting Massive Particles (LIMPs)

Baltz, Bergstrom 2002; Bergstrom 1208.6082

LIMPs predicted a gamma-ray line without a continuum

$$\mathcal{L}_{\text{Zee}} = f_{\alpha\beta} L_{\alpha}^T C i \tau_2 L_{\beta} S^+ + \mu \Phi_1^T i \tau_2 \Phi_2 S^- + \text{h.c.}$$

$$\mathcal{L}_{\text{KNT}} = f_{\alpha\beta}L_{\alpha}^{T}Ci\tau_{2}L_{\beta}S_{1}^{+} + g_{\alpha}N_{R}S_{2}^{+}l_{\alpha_{R}}$$
$$+ M_{R}N_{R}^{T}CN_{R} + V(S_{1}, S_{2}) + \text{h.c.},$$

Zee 1980

Krauss, Nasri, Trodden 2002

Thursday, June 27, 13

270 GeV decaying dark matter?

Kyae, Park 1205.4151; Buchmuller, Garny 1206.7056

WMAP/Planck haze

Positron excess

Adriani et al 2009; Ackerman et al 2011; Aguilar et al 2013

Weniger 2012

Bernabei et al (DAMA) 1997-10

Annually modulated.....

Drukier,

Freese.

Spergel

1986

Aalseth et al (CoGeNT) 1106.0650

.....and unmodulated

232 km

Caveat: "Rates look

Agnese et al (CDMS) 2013

⁸ Anglehor et al (CRESST) 201 I

Not so many events

Adapted from Aprile et al (XENON-100) 2012

Angle et al (XENON10) 2013

No events in CDEX (same target as CoGeNT and CDMS-Ge) Zhao et al (CDEX) 2013

"We consider DAMA/ LIBRA and CRESST-II more difficult to interpret at this time" Hooper 2013

XENON100 detects events too!

Is XENON100's sensitivity overestimated?

DM-nucleus elastic scattering

What force couples dark matter to nuclei?

Coupling to either nucleon number density or nucleon spin density

$$\begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} = \frac{\sigma_{SI}(E) + \sigma_{SD}(E)}{2m\mu^2} \frac{\sigma_{SI}(E) + \sigma_{SD}(E)}{Reduced \text{ mass } \mu = mM/(m+M)}$$
$$\sigma(E) = E_{\max} \frac{d\sigma}{dE} = \frac{2\mu^2 v^2}{m} \frac{d\sigma}{dE}$$

Particle physics model

I-IO GeV WIMP; very incomplete

Models		References	
S U S Y	MSSM neutralino	Goldberg 1983; Griest 1988; Gelmini, Gondolo, Roulet 1989; Griest, Roszkowski 1991; Bottino et al 2002-11; Kuflik, Pierce, Zurek 2010 ; Feldman et al 2010 ; Cumberbatch et al 2011 ; Belli et al 2011;	
	beyond-MSSM neutralino	Flores, Olive,Thomas 1990; Gunion, Hooper, McElrath 2005; Belikov, Gunion, Hooper,Tait 2011; Belanger, Kraml, Lessa 1105.4878;	
	sneutrino	;An, Dev, Cai, Mohapatra 1110.1366; Cerdeno, Huh, Peiro, Seto 1108.0978;	
minimalist dark matter (real singlet scalar with Z ₂)		Silveira, Zee 1985; Veltman, Ydnurain 1989; McDonald 1994; Burgess, Pospelov, ter Veldhuis 2000; Davoudiasl, Kitano, Li, Murayama 2004; Andreas et al 2008-10; He, Tandean 1109.1267;	
technicolor and alike		; Lewis, Pica, Sannino 1109.3513;	
kinetically-mixed U(1)' (Higgs portal)		; Foot 2003-10; Kaplan et al 1105.2073; An, Gao 1108.3943; Fornengo, Panci, Regis 1108.4661; Andreas, Goodsell, Ringwald 1109.2869; Andreas 1110.2636; Feldman, Perez, Nath 1109.2901;	
baryonic U(I)'		Gondolo, Ko, Omura ; Cline, Frey 1109.4639;	
•••••			

Particle physics model

$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

Energy and/or velocity dependent scattering cross sections

nucleus	DM	$E_{\max} d\sigma/dE$	
nucieus		light mediator	heavy mediator
"charge"	"charge"	$1/E^{2}$	$1/M^{4}$
"charge"	dipole	1/E	E/M^4
dipole	dipole	$const + E/v^2$	E^2/M^4

All terms may be multiplied by nuclear or DM form factors F(E)

See e.g. Barger, Keung, Marfatia 2010; Fornengo, Panci, Regis 2011; An et al 2011

Isospin-violating dark matter

Spin-independent couplings to protons stronger than to neutrons allow modulation signals compatible with other null searches

Kurylov, Kamionkowski 2003; Giuliani 2005; Cotta et al 2009; Chang et al 2010; Kang et al 2010; Feng et al 2011; Del Nobile et al 2011;

Why $f_n/f_p = -0.7$ suppresses the coupling to Xe

Light neutralinos in the MSSM

Bottino, Donato, Fornengo, Scopel 2003-2011 Non-GUT MSSM

~10 GeV neutralinos may account for DAMA, CoGeNT, and CRESST

"ight" Higgs (~90 GeV) — enhanced couplings (large $\tan \beta$)

Fornengo at TAUP 2011

Belli et al 1106.4667

Light neutralinos in the MSSM

Bottino, Donato, Fornengo, Scopel 2003-2011 Non-GUT MSSM

~10 GeV neutralinos may account for DAMA, Corner, and CRESST

negative LHC Higgs searches impose $m_{\chi} > 18 \text{ GeV}$ (see also Kuflik, Pierce, Zurek 2010)

Fornengo at TAUP 2011

Bottino et al 1112.5666

Minimalist dark matter

do not confuse with minimal dark matter

Gauge singlet scalar field S, stabilized by Z_2 symmetry

$$\mathcal{L}_S = \frac{1}{2} \partial^{\mu} S \partial_{\mu} S - \frac{1}{2} \mu_S^2 S^2 - \frac{\lambda_S}{4} S^4 - \lambda_L H^{\dagger} H S^2$$

Silveira, Zee 1985

Andreas, Hambye, Tytgat 2008

Thursday, June 27, 13

Minimalist dark matter

do not confuse with minimal dark matter

Constraints from the LHC: a 125 GeV Higgs is not 99.2% invisible

Djouadi, Falkowski, Mambrini, Quevillon 2012

Light WIMPs with light Z'boson

Example: Leptophobic Z'

- An extra U(I) gauge boson Z' coupled to quarks but no leptons, with no significant kinetic mixing
- Works for mz⁻~10-20 GeV and α'~10⁻⁵

Gondolo, Ko, Omura 2011

Astrophysics model

$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

How much dark matter comes to Earth?

Local halo density
(astrophysics) =
$$\rho \int_{v > v_{\min}(E)} \frac{f(\vec{v}, t)}{v} d^3 v$$

Minimum speed to impart energy $E, \; v_{\min}(E) = (ME/\mu + \delta)/\sqrt{2ME}$

Astrophysics model: velocity distribution

We know very little about the dark matter velocity distribution

Cosmological N-Body simulations including baryons are challenging

Include energy dependence of efficiency and energy response function. Gondolo Gelmini 1202.6359

Change variables:

Include energy dependence of efficiency and energy response function. Gondolo Gelmini 1202.6359

Expected rate in energy interval $[E_1, E_2]$

$$R_{[E'_1,E'_2]} = \int_0^\infty \mathcal{R}_{[E'_1,E'_2]}(v_{\min}) \ \tilde{\eta}(v_{\min}) \ dv_{\min}$$

$$Response function$$

Estimate of halo-independent factor in velocity interval $[v_1, v_2]$

$$\overline{\tilde{\eta}}_{[v_1,v_2]} = \frac{R_{[E_1',E_2']}^{\text{measured}}}{\int_0^\infty \mathcal{R}_{[E_1',E_2']}(v_{\min}) \, dv_{\min}}$$
$$\widetilde{\eta}(v) < \frac{R_{[E_1',E_2']}^{\text{upper limit}}}{\int_0^v \mathcal{R}_{[E_1',E_2']}(v_{\min}) \, dv_{\min}}$$

Include energy dependence of efficiency and energy response function.

Del Nobile, Gelmini, Gondolo, Huh 2013

Thursday, June 27, 13

Anomalous magnetic moment dark matter

Halo modifications alone cannot save the MDM signal regions from the Xe bounds

CDMS-Si event rate is similar to annual modulated rates

Still depends on particle model

Del Nobile, Gelmin, Gondolo, Huh 2013

Summary

- The thermal WIMP hypothesis is under strong scrutiny, especially at masses ~10 GeV (light dark matter).
- Controversial evidence for direct detection of light dark matter particles (maybe be backgrounds).
 - Halo-independent analyses show that recent CDMS-Si events occur at a rate smaller than the CoGeNT/DAMA modulation amplitudes.
- LHC and indirect searches (γ, CMB, e⁺) place strong contraints on models of ~10 GeV thermal WIMPs.
 - Light supersymmetric particles may still be possible beyond the MSSM. Non-supersymmetric models include a 10-20 GeV Z' boson coupled to quarks but not leptons.