

Axion searches with the EDELWEISS Ge bolometers

C. Nones - CEA/DSM/IRFU/SPP on behalf of the EDELWEISS collaboration

Outline

The EDELWEISS-II experiment in a nutshell -> Valentin Kozlov's talk for more details

- The EDELWEISS Ge hybrid detectors
- Different axion sources
- Axion detection with EDW Ge detectors
- New results on different channels
- Conclusions

EDELWEISS-II in a nutshell

EDELWEISS-II

~ 50 people / 4 countries

It is located at the Underground Laboratory of Modane.

<u>Main goal</u>: direct detection of WIMPs with Ge double-readout (heat + ionization) detectors

- EDELWEISS experiment shows that this technology is mature for detection of WIMPs and rare events in general.
- EDELWEISS has obtained competitive results in the search for WIMPs, also in the controversial low-mass region.
- The low raw background achieved (including electron recoil signals) close to threshold makes EDELWEISS an interesting set-up to search for axions and ALPs.

The EDELWEISS hybrid detectors

2nd generation - ID400 - used in this analysis

Φ 70mm, H 20mm, 410g 14 concentric electrodes (width 100μm, spacing 2mm) without beveled edge.

- Keep the EDW-I NTD phonon detector
 Modify the E field near the surfaces with interleaved electrodes:
 - Biases to have an electric field
 - ~ horizontal near the surface and
 - ~ vertical in the bulk

- The rings are alternately connected by ultra-sonic bonded wires.

 \rightarrow Easy cuts on « veto » + guard electrodes define the fiducial 20ne

Active recoil discrimination

Axions? Why not ...

- * One can use Ge detectors originally built for WIMP dark matter (or $0\nu\beta\beta$)
- Beauty of the method: it is possible to piggyback on the existing Ge experiments

Axion searches - Different studied sources

2) The Galactic halo

Hypothesis: Axions make up all of galactic dark matter and they have a mass in the keV region.

Summary table: production & detection

Production	Detection	Signature
Primakoff channel 9 _{Ay}	Bragg diffraction g _{Ay}	Energy depencence and time correlator
Compton, Bremsstrahlung, axio- recombination&deexcitation g _{Ae}	Axio-electric effect g _{Ae}	Energy dependence (spectral bump)
Solar ⁵⁷ Fe de-excitation g _{Ae} ×g _{AN} ^{eff}	Axio-electric effect g _{Ae}	Energy dependence (line @ 14.4 keV)
Axions as dark matter	Axio-electric effect g _{Ae}	Energy dependence (line @ m _A)

Data selection: EDELWEISS-II

Axions can trigger an electronic recoil: event selection in the electron recoil band

Use of the **fiducial volume** to discriminate surface events

Selection of periods with good baseline on heat and fiducial ionization: homogeneous data set of 450 kg d

Define "best" energy fiducial estimator by combining heat and fiducial ionization

Threshold definition: impose online trigger efficiency > 50% and other cut efficiency > 95%

3 detectors have a **threshold @ 2.5 keV** 2 @ 3 keV annd 5 @ 3.5 keV. **FWHM** at low energy is **0.8 keV**.

An example: the 14.4 keV case (1)

Detection: axio-electric effect

$$R_{14.4} = \Phi_{14.4} \times \sigma_a \times W \times \varepsilon$$

We assume a Poisson background and construct a likelihood function

An example: the 14.4 keV case (2)

Dark Matter axions

Hypothesis: Axion make up all of galactic dark matter and they have a mass in the keV region.

g_{Ae} limits with the EDELWEISS-II data

g_{Ae} limits: EDELWEISS-II & the others

---- model dependent limit **RED curves** - EDW results

$g_{A\gamma}$: Primakoff effect

The expected rate in 1 day

$$\begin{split} R(\tilde{E},t,\alpha) &= 2(2\pi)^3 \frac{V}{v_a^2} \sum_G \frac{d\Phi}{dE_A} \frac{g_{A\gamma}^2}{16\pi^2} \sin(2\theta)^2 \frac{1}{|G|^2} \left| S(G) F_A^0(G) \right|^2 W(E_A,\tilde{E}) \\ &= \left(\frac{g_{A\gamma} \cdot 10^8}{GeV^{-1}} \right)^4 \cdot \overline{R}(\tilde{E},t,\alpha) \equiv \lambda \cdot \overline{R}(\tilde{E},t,\alpha) \end{split}$$

The statistical analysis

The vertical axis of the bolometer tower is aligned with the [001] axis of each detector (one degree precision) BUT the individual azimuthal orientation a of each detector was not measured.

Build a time correlation function

Dependency on the azimuthal orientation

Combine all 10 detectors with unknown orientations:

- \rightarrow MC simulation of the experiment`
- \rightarrow Scan over orientations and possible couplings

 \rightarrow Rule out coupling from the comparison between simulation and real data.

Energy analysis window: 3-8 keV

$g_{A\gamma}$ limits with the EDELWEISS-II data

 $g_{A\gamma} < 2.13 \cdot 10^{-9} \text{ GeV}^{-1}$

19

Conclusions (1)

Bkg data from the EDELWEISS-II detectors, originally used for WIMP search, have been used to constrain the couplings of axion-like particles within different scenarios.

Production	Detection	Coupling limits
Primakoff channel 9 _{Ay}	Bragg diffraction g _{Ay}	g _{Aγ} <2.13x10 ⁻⁹ GeV ⁻¹
Compton, Bremsstrahlung, axio- recombination&deexcitation g _{Ae}	Axio-electric effect g _{Ae}	g _{Ae} <2.56x10 ⁻¹¹
Solar ⁵⁷ Fe de-excitation g _{Ae} ×g _{AN} ^{eff}	Axio-electric effect g _{Ae}	g _{Ae} ×g _{AN} ^{eff} <4.7×10 ⁻¹⁷
Axions as dark matter	Axio-electric effect g _{Ae}	g_{Ae} < 1.05×10⁻¹² @ 12.5 keV

Conclusions (2)

EDELWEISS-II data: axion mass limits

Schloß Waldthausen

24-28 June 2013

21