

Scientific American, May 2011

Cosmic rays: spectrum and composition

Cosmic ray physics in a nutshell

Positron fraction: Exotic sources of cosmic rays?

Context: Indirect search for dark matter

Example fits: 3 TeV DM particle annihilating to $\tau^+\tau^-$, with a cross section of 2·10⁻²² cm³/s

Interpreting antimatter and electron spectra in terms of dark matter requires:

- particle mass of a few TeV
- leptophilic annihilation
- very large annihilation cross section

Astrophysical sources for positrons

Positrons inevitably produced in magnetosphere of pulsars and accelerated in pulsar wind nebula.

Context: Astrophysical sources for positrons

Positrons inevitably produced in magnetosphere of pulsars and accelerated in pulsar wind nebula.

No exotic physics needed to explain rising positron fraction.

e.g.: Delahaye et al., A&A 524 (2010) A51 Blasi & Amato 2010, 1007.4745

AMS-02 launch

Henning Gast, RWTH Aachen

p 10

5m x 4m x 3m

AMS-02

PAMELA vs AMS-02

GF: 21.5 cm² sr

GF: 250 – 3500 cm² sr, depending on physics analysis

AMS-02 particle identification

- Particle ID requires complex algorithms for each subdetector.
- Combine information from all subdetectors.
- Example: proton rejection 1:1,000,000

Cosmic rays are measured at up to 2 KHz and data is generated at ~7 Gbit/s, reduced on board to an average of ~10 Mbit/s.

AMS-02 data taking

- For every year of AMS flight:
- 20 TB raw data
- 160 TB reconstructed event data
- Data handling non-trivial!

Tracker: Stability of alignment of outer tracker planes

AMS-02 performance: TRD spectra

Gain calibration

TRD proton rejection vs rigidity

ECAL: energy resolution

ECAL: proton rejection power

1.03 TeV electron

"First Result from the AMS on the ISS: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV"

6.8 million positrons and electrons in final data sample

Selected for a
Viewpoint in Physics and
an Editors' Suggestion
[Aguilar,M. et al
(AMS Collaboration)
Phys. Rev. Lett. 110,
141102 (2013)]

PHYSICAL REVIEW LETTERS...

Published by
American Physical Society,

Volume 110, Number 14

Example of positron selection

AMS-02 positron fraction

- Steady increase from 10 to ~250 GeV
- No structure in the spectrum

Comparison to earlier measurements

A simple model

$$\Phi_{e^{+}} = C_{e^{+}}E^{-\gamma_{e^{+}}} + C_{s}E^{-\gamma_{s}}e^{-E/E_{s}}$$

$$\Phi_{e^{-}} = C_{e^{-}}E^{-\gamma_{e^{-}}} + C_{s}E^{-\gamma_{s}}e^{-E/E_{s}}$$

Limit on dipole anisotropy

Data are consistent with isotropic distribution of arrival directions:

$$\frac{r_e(b,l)}{\langle r_e \rangle} - 1 = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\pi/2 - b, l)$$

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

$$\delta = 3\sqrt{C_1/4\pi}$$

AMS-02:

 δ < 0.036 at the 95% confidence level.

Dark matter in the light of AMS-02 results

- Cholis & Hooper, 1304.1840: Dark matter annihilating directly to e⁺ e⁻ or μ⁺ μ⁻ no longer capable of describing observed rise in positron fraction.
- Annihilation via light intermediate states into muons and pions consistent with data, for DM masses of 1.5 3 TeV, $\langle \sigma v \rangle$ as high as (6 23) x 10^{-24} cm³/s
- Describing the Fermi all-electron spectrum at the same time requires spectral break in cosmic-ray electrons. (May be expected if single or few local sources dominate.)

Pulsar models also still work!

- Sum of known pulsars, assuming
 - exponentially cutoff power law spectra
 - 10-20% of spin-down power converted to CR acceleration
 - break in CR electron spectrum as before (spectral hardening at 100 GeV)

Pulsar models in the context of AMS-02 data

- Linden & Profumo, 1304.1791:
 Background from secondary production plus nearby mature pulsar naturally fits AMS-02 positron fraction and Fermi all-electron spectrum.
- Geminga and Monogem as possible candidates.

Anisotropies

- Smoking gun signature for pulsar models: Anisotropy in the arrival directions of CR positrons and electrons.
- Authors propose using archival ACT data to search for anisotropy.

$$\Delta = \frac{N_f - N_b}{N_f + N_b}$$

A hint for charge asymmetry in electron/positron excess?

- Masina & Sannino, 1304.2800:
- Consider AMS-02 positron fraction and Fermi-LAT all-electron flux.
- Model positron and electron fluxes as sum of background plus unknown component:

$$\phi_{e^+}(E) = \phi_{e^+}^U(E) + \phi_{e^+}^B(E), \quad \phi_{e^-}(E) = \phi_{e^-}^U(E) + \phi_{e^-}^B(E)$$

- Assume background model (e.g. Galprop, simple power-law).
- Goal: Study charge asymmetry in unknown source component:

$$r_U(E) \equiv \frac{\phi_{e^-}^U(E)}{\phi_{e^+}^U(E)}$$

A hint for charge asymmetry in electron/positron excess?

Data favour deviation of charge ratio from unity, unless somewhat extreme value for electron background spectral index adopted.

- Pulsar and dark matter annihilation models generically predict charge symmetry.
- **Example for charge asymmetry:** DM decay to $\mu^- \tau^+$ (lepton-flavour violation!)

AMS Physics Potential

- Searches for primordial antimatter:
 - Anti-nuclei: He, ...
- Dark Matter-searches:
 - e+, e±, p,...
 - simultaneous observation of several signal channels.
- Searches for new forms of matter:
 - strangelets, ...
- Measuring CR spectra refining propagation models;
- Identification of local sources of high energy photons (~TeV):
 - SNR, Pulsars, PBH, ...
- Study effects of solar modulation on CR spectra over 11 year solar cycle
- "The most exciting objective of AMS is to probe the unknown; to search for phenomena which exist in nature that we have not yet imagined nor had the tools to discover."

Summary

- Cosmic-ray research aims at answering fundamental questions about our Universe.
- AMS-02 will be the leading instrument in its field for many years to come.
- Data analysis is an extremely complex endeavour:
 - challenging environment in space
 - interplay of different sub-detectors
 - enormous data volume
- AMS-02 has measured cosmic-ray positron fraction with exquisite precision:
 - Steady increase from 10 to ~250 GeV
 - No structure in the spectrum
- Results have profound impact on the modelling of CR sources: dark matter or pulsar wind nebulae?
- Measurement of anisotropy in positron fraction extremely important in this context.

The Cosmos is the Ultimate Laboratory.

Cosmic rays can be observed at energies higher than any accelerator.

